Formal intercepts of Sturmian words and Prefix-Suffix duality for low complexity words

Caius Wojcik - ICJ - Lyon 1
Journées Montoises - LaBRI Bordeaux

10 September 2018

Notations:

- \mathcal{A} : any set, the alphabet.
- \mathcal{A}^{+}: finite words over \mathcal{A}.
- $\mathcal{A}^{\mathbb{N}}$: infinite words over \mathcal{A}.
- $|u|$: length of a finite word u.
- \widetilde{u} : mirror image of a word u.
- $\mathbb{P}_{n}(x)$: prefix of length $n \geq 1$ of an infinite word x,
- T :

the shift on infinite words
- $T^{n}(x)$: the n-th suffix of an infinite word x.
(1) Introduction
(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function
(4) Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality
(1) Introduction
(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function

4 Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality

Introduction :

- Thermodynamic has its 1 st and 2 nd laws,
- Algebra has a fundamental theorem,
- Calculus has a fundamental principle,

Question: What would look like a fundamental principle of combinatorics on words ?

Of course, there are an infinite number of answers... But we introduce and illustrate one of them :

The prefix-suffix duality :
" For any word, the set of its prefixes and the set of its suffixes are in natural bijective correspondence. "

Illustration with the Zimin word: The Zimin word Z, is defined over the infinite alphabet $\mathcal{A}_{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ as

- $Z=\prod_{n \geq 1} x_{\text {val }_{2}(n)+1} \quad$ where $v a l_{2}$ is the 2-adic valuation.
- $Z=\lim Z_{n} \quad$ where $Z_{1}=x_{1}$ and $Z_{n+1}=Z_{n} x_{n+1} Z_{n}$ for $n \geq 1$.
- $Z=\varphi(Z) \quad$ where φ is the morphism defined by $\varphi\left(x_{i}\right)=x_{1} x_{i+1}$ for $i \geq 1$.

$$
Z=x_{1} x_{2} x_{1} x_{3} x_{1} x_{2} x_{1} x_{4} x_{1} x_{2} x_{1} x_{3} x_{1} \ldots
$$

Define the sequences $\left(U_{n}\right)_{n \geq 1}$ and $\left(V_{n}\right)_{n \geq 1}$ with $U_{1}=V_{1}=x_{1}$ and for $n \geq 1$:

$$
U_{n+1}=x_{n+1} U_{1} U_{2} \ldots U_{n} \quad \text { and } \quad V_{n+1}=V_{n} V_{n-1} \ldots V_{1} x_{n+1},
$$

Example: $U_{2}=x_{2} x_{1}, U_{3}=x_{3} x_{1} x_{2} x_{1}, U_{4}=x_{4} x_{1} x_{2} x_{1} x_{3} x_{1} x_{2} x_{1}$ and

$$
Z=\prod_{i \geq 1} U_{i}
$$

Lemma

Let $m \geq 1$, written $m=\sum_{i=0}^{N} b_{i} 2^{i}$ in base 2 , where the $\left(b_{i}\right)^{\prime} s$ equal 0 or 1 , and equal zero for large $i \geq 0$. Then :

$$
\widetilde{\mathbb{P}}_{m}(Z)=\prod_{i=0}^{N} U_{i+1}^{b_{i}} \quad \text { and } \quad T^{m}(Z)=\prod_{i \geq 0}^{\uparrow} U_{i+1}^{1-b_{i}}
$$

Let $\gamma=\sum_{i \geq 0} b_{i} 2^{i}$ be a 2 -adic number, and define

$$
\widetilde{\mathbb{P}}_{\gamma}(Z)=\prod_{i=0}^{+\infty} U_{i+1}^{b_{i}} \quad \text { and } \quad T^{\gamma}(Z)=\prod_{i=0}^{+\infty} U_{i+1}^{1-b_{i}}
$$

If γ is not an integer, then we have the reciprocity formula :

$$
T^{\gamma}(Z)=\widetilde{\mathbb{P}}_{\bar{\gamma}}(Z)
$$

where $\gamma \longmapsto \bar{\gamma}=-1-\gamma$ is an involution on the set of 2-adic numbers that are not integers,
$\bar{\gamma}$ is called the complement of γ.

Denote by $\Omega(Z)$ the set of infinite words sharing the same factors as Z.

- Every element Y of $\Omega(Z)$ writes uniquely in the form

$$
Y=\widetilde{\mathbb{P}}_{\gamma}(Z)
$$

where γ is a 2-adic number that is not a natural number.

- Moreover, for every γ a 2-adic number that is not an integer, the bi-infinite word

$$
T^{\gamma}(Z) \cdot T^{\gamma}(Z)
$$

shares the same factors as Z.
This defines a natural bijective correspondence between bi-infinite orbits of Z and the set of 2-adic numbers up to integer equivalence.

This is the so-called Prefix-Suffix duality

(1) Introduction

(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function

4 Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality

For an infinite word x and a natural integer $n \geq 1$, we define the complexity function :

$$
p(x, n)=\text { number of factors of } x \text { of length } n .
$$

Theorem (Morse-Hedlund)

Let x be an infinite word. The following statements are equivalent
i) the word x is ultimately periodic,
ii) the complexity function $p(x, \cdot)$ is bounded,
iii) there exists $n \geq 1$ such that $p(x, n)=p(x, n+1)$,
iv) there exists $n \geq 1$ such that $p(x, n) \leq n$.

The word x is said to be Sturmian when

$$
\forall n \geq 1, \quad p(x, n)=n+1
$$

For $x \in\{0,1\}^{\mathbb{N}}$, the following statements are equivalent :
i) The word x is Sturmian,
ii) x is not ultimately periodic, and for every factors u, v of x with $|u|=|v|$, we have the balanced property: $\|\left. u\right|_{1}-|v|_{1} \mid \leq 1$,
iii) x is not ultimately periodic, and for every factors u, v of x, we have the equivalent balanced property :

$$
\left|\frac{|u|_{1}}{|u|}-\frac{|v|_{1}}{|v|}\right|<\frac{1}{|u|}+\frac{1}{|v|}
$$

iv) x satifffies the balanced property, and the number

$$
\alpha=\lim _{|u| \rightarrow+\infty} \frac{|u|_{1}}{|u|}
$$

is an irrational number.
The number α is called the slope of x.

The slope is the first parameter that describes a Sturmian word.

Proposition

- Two Sturmian words of different slopes only share a finite number of factors,
- Two Sturmian words of same slopes have same set of factors,

A word is Sturmian if and only if for all $n \geq 1$ it has exactly one left special factor, noted L_{n}.
To recover the set of factors from the slope α, we get from the balanced property applied to $0 L_{n}$ and $1 L_{n}$:

$$
\left|\frac{\left|L_{n}\right|_{1}}{n}-\alpha\right|<\frac{1}{n} \quad \text { and } \quad\left|\frac{1+\left|L_{n}\right|_{1}}{n}-\alpha\right|<\frac{1}{n},
$$

so that $\left.\left\{\left|L_{n}\right|_{1}\right\}=\mathbb{Z} \cap\right] n \alpha-1, n \alpha[$, determining uniquely the sequence of words $\left(L_{n}\right)_{n \geq 1}$.

Definition

We define the characteristic word c_{α} of the slope α as:

$$
c_{\alpha}=\lim L_{n}
$$

Amongst Sturmian word of slope α, the characteristic word is the only one such that both $0 c_{\alpha}$ and $1 c_{\alpha}$ are Sturmian.

We can build the characteristic word with the use of continued fractions : every irrationnal $\alpha \in] 0,1[$ writes uniquely as

$$
\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

with $a_{i} \geq 1$ for all $i \geq 1$.

With $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$, we define the standard sequence of finite words :

$$
\begin{gathered}
s_{-1}=1, \quad s_{0}=0, \quad s_{1}=s_{0}^{a_{1}-1} s_{-1} \\
\forall n \geq 1, \quad s_{n+1}=s_{n}^{a_{n+1}} s_{n-1}
\end{gathered}
$$

Theorem

$$
c_{\alpha}=\lim _{n \geq 1} s_{n}
$$

- s_{n} ends with 10 for even $n \geq 2$,
- s_{n} ends with 01 for odd $n \geq 3$,
- s_{n}^{--}is a palindrome, where u^{-}denotes a finite word u deprived of its last letter,

(1) Introduction

(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function

4 Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality

Rauzy graph, or factor graph of an infinite word :
Defined as the sequence of directed graphs $\left(G_{m}\right)_{m \geq 1}$ whose :

- vertexes of G_{m} are the factors of x of length m,
- arrows are $s \rightarrow t$ when there exists a factor w of x of length $m+1$ and two letters a, b such that $w=s b=a t$,
For Sturmian words, G_{m} has $m+1$ vertexes, and is formed as the fusion of two cycles, sharing a common part.

Repetition function:
For an infinite word x and $m \geq 1$, define the repetition function $r(x, \cdot)$ as :
$r(x, m)=$
$\max \left\{k \geq 0 \mid \mathbb{P}_{m}(x), \mathbb{P}_{m}(T(x)), \ldots, \mathbb{P}_{m}\left(T^{k-1}(x)\right)\right.$ are all distincts $\}$

Some results about the repetition function :

- For any infinite word $x, r(x, m) \leq p(x, m)$
- Let x be a Sturmian word and $m \geq 2$, then :

$$
r(x, m)=m+1 \quad \Longleftrightarrow \quad r(x, m) \neq r(x, m-1)
$$

- Let α be a slope and $m \geq 2$, then :

$$
\mathbb{P}_{m}\left(T^{r\left(c_{\alpha}, m\right)}\left(c_{\alpha}\right)\right)=\mathbb{P}_{m}\left(c_{\alpha}\right)=L_{m}
$$

- Let $z=p 01 q$ be a palindromic word, with p and q palindromes. Then :

$$
r(z,|p|+1)=|p|+2
$$

Define the sequence of continuants $\left(q_{n}\right)_{n \geq-1}$ of α as the denominators of the irreducible fraction

$$
\frac{p_{n}}{q_{n}}=\left[0 ; a_{1}, \ldots, a_{n}\right]=\frac{1}{a_{1}+\frac{1}{\ldots+\frac{1}{a_{n}}}}
$$

with $q_{-1}=0$ and $q_{0}=1$. Also : $q_{n}=\left|s_{n}\right|$, and the $\left(q_{n}\right)$'s satisfy the induction relation, for $n \geq 0$:

$$
q_{n+1}=a_{n+1} q_{n}+q_{n-1}
$$

Theorem

$$
r\left(c_{\alpha}, m\right)=q_{n} \quad \text { for } \quad q_{n}-1 \leq m \leq q_{n+1}-2
$$

Every infinite word x defines a path in the Rauzy graph G_{m} :

$$
\mathbb{P}_{m}(x) \rightarrow \mathbb{P}_{m}(T(x)) \rightarrow \mathbb{P}_{m}\left(T^{2}(x)\right) \rightarrow \ldots \rightarrow \mathbb{P}_{m}\left(T^{k}(x)\right) \rightarrow \ldots
$$

The value $r(x, m)$ is interpreted in the Rauzy graph G_{m} as the longuest Hamiltonian path in this path, that is the longuest path not passing twice on a vertex.

We define the integer intervals for $n \geq 0$, and $1 \leq \ell \leq a_{n+1}-1$,

$$
\begin{gathered}
I_{n}=\left[q_{n}-1, q_{n+1}-2\right]=I_{n}^{0} \cup \bigcup_{\ell=1}^{a_{n+1}-1} I_{n}^{\ell} \\
I_{n}^{0}=\left[q_{n}-1, q_{n}+q_{n-1}-2\right] \\
I_{n}^{\ell}=\left[\ell q_{n}+q_{n-1}-1,(\ell+1) q_{n}+q_{n-1}-2\right] .
\end{gathered}
$$

Proposition

For $m \in l_{n}^{\ell}$, with $0 \leq \ell \leq a_{n+1}-1$, then

- One cycle in G_{m} is of length q_{n}, called the referent cycle,
- The other one is of length $\ell q_{n}+q_{n-1}$

For any Sturmian word x, x cannot turn twice around the non-referent cycle.
Path of the characteristic word c_{α} : For $m \in I_{n}^{\ell}$ with
$0 \leq \ell \leq a_{n+1}-1$:

- The characteristic word c_{α} turns exactly $a_{n+1}-\ell$ times around the referent cycle, that is :

$$
\begin{aligned}
q_{n} & =r\left(c_{\alpha}, m\right)=r\left(T^{q_{n}}\left(c_{\alpha}\right), m\right) \\
& =\ldots=r\left(T^{\left(a_{n+1}-l-1\right) q_{n}}\left(c_{\alpha}\right), m\right) \neq r\left(T^{\left(a_{n+1}-l\right) q_{n}}\left(c_{\alpha}\right), m\right),
\end{aligned}
$$

(1) Introduction

(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function
(4) Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality

Let α be a slope and $\left(q_{n}\right)_{n \geq-1}$ its sequence of continuants.
For naturals $\left(b_{i}\right)$, the Ostrowski conditions are the equivalent statements :
i) $\forall \ell=1 \ldots k, \quad \sum_{i=0}^{\ell-1} b_{i+1} q_{i}<q_{\ell}$
ii) - $0 \leq b_{1} \leq a_{1}-1$

- $\forall i \geq 1, \quad 0 \leq b_{i} \leq a_{i}$
- $\forall i \geq 1, \quad b_{i+1}=a_{i+1} \Longrightarrow b_{i}=0$

Let $n \geq 1$. Any $N \in\left[0, q_{n}[\right.$ writes uniquely as

$$
N=\sum_{i=0}^{n-1} b_{i+1} q_{i}
$$

where the $\left(b_{i}\right)_{i \geq 1}$ satisfy the Ostrowski conditions.

Definition

The set \mathcal{I}_{α} of formal intercepts of the slope α is defined as

$$
\mathcal{I}_{\alpha}=\left\{(k _ { n }) _ { n \geq 1 } \in \prod _ { n > 0 } \left[0, q_{n}\left[\mid \forall n \geq 1, k_{n}=k_{n+1}\left[\bmod q_{n}\right]\right\}\right.\right.
$$

If $\rho=\left(\rho_{n}\right)_{n \geq 1}$ is a formal intercept, there exists a unique sequence $\left(b_{i}\right)_{i \geq 1}$ satisfying the Ostrowski conditions, such that

$$
\rho=\left(\rho_{n}\right)_{n \geq 1}=\left(\sum_{i=0}^{n-1} b_{i+1} q_{i}\right)_{n \geq 1}
$$

and in this case we directly write

$$
\rho=\sum_{i=0}^{+\infty} b_{i+1} q_{i}
$$

For $m \geq n>0$, set :

$$
\begin{aligned}
\Psi_{n}^{n+1}: \begin{array}{ccc}
{\left[0, q_{n+1}[\right.} & \longmapsto & {\left[0, q_{n}[\right.} \\
k & \longmapsto & \longmapsto\left[\bmod q_{n}\right]
\end{array} \\
\Psi_{n}^{m}=\Psi_{n}^{n+1} \circ \Psi_{n+1}^{n+2} \circ \cdots \circ \Psi_{m-1}^{m}:\left[0, q_{m}\left[\rightarrow \left[0, q_{n}[\right.\right.\right.
\end{aligned}
$$

then

$$
\mathcal{I}_{\alpha}=\lim _{\longleftarrow}\left[0, q_{n}\left[=\left\{(k _ { n }) _ { n > 0 } \in \prod _ { n > 0 } \left[0, q_{n}\left[\mid n \leq m \Rightarrow \Psi_{n}^{m}\left(k_{m}\right)=k_{n}\right\}\right.\right.\right.\right.
$$

is the projective limit of the sets $\left[0, q_{n}[\right.$ endowed with the functions Ψ_{n}^{m}. Hence are naturally defined the functions $\Psi_{n}: \mathcal{I}_{\alpha} \mapsto\left[0, q_{n}[\right.$:

$$
\Psi_{n}\left(\sum_{i=0}^{+\infty} b_{i+1} q_{i}\right)=\sum_{i=0}^{n-1} b_{i+1} q_{i}<q_{n}
$$

Let $\rho=\left(\rho_{n}\right)_{n \geq 1}=\sum_{i \geq 0} b_{i+1} q_{i}$ be a formal intercept and

$$
\lambda_{n}=q_{n+1}+q_{n}-2-\rho_{n+1}, \quad \text { then : }
$$

- The words $T^{\rho_{n}}\left(c_{\alpha}\right)$ and $T^{\rho_{n+1}}\left(c_{\alpha}\right)$ share the same prefixes of length λ_{n}. If $b_{n+1} \neq 0$, this is the maximum such length.
- We have the optimal lower bound $\lambda_{n} \geq q_{n}-1$

Definition

Let rho $=\left(\rho_{n}\right)_{n \geq 1}$ be a formal intercept, then we define the infinite word

$$
T^{\rho}\left(c_{\alpha}\right)=\lim T^{\rho_{n}}\left(c_{\alpha}\right)
$$

sharing the prefix of length $q_{n}-1$ of $T^{\rho_{n}}\left(c_{\alpha}\right)$, for all $n \geq 1$.
The length of the longuest common prefix of $T^{\rho}\left(c_{\alpha}\right)$ and $T^{\rho_{n}}\left(c_{\alpha}\right)$ is λ_{N}, where N is the smallest $N \geq n$ such that $b_{N+1} \neq 0$.

Theorem

Every Sturmian word x of slope α writes uniquely in the form

$$
x=T^{\rho}\left(c_{\alpha}\right)
$$

where ρ is a formal intercept of the slope α.
The reverse bijection is given as follows. For x a Sturmian word of slope α, the sequence $\left(\gamma_{n}\right)_{n \geq 1}$ defined as :

$$
\gamma_{n}=\min \left\{k \geq 0 \mid \mathbb{P}_{q_{n}-1}(x)=\mathbb{P}_{q_{n}-1}\left(T^{k}\left(c_{\alpha}\right)\right)\right\}
$$

is a formal intercept.
Example: The words $0 c_{\alpha}$ and $1 c_{\alpha}$ have resp. formal intercepts :

$$
\begin{gathered}
\sum_{i \geq 0} a_{2 i+2} q_{2 i+1}=\left(q_{2\left\lfloor\frac{n}{2}\right\rfloor}-1\right)_{n \geq 1} \quad \text { and } \\
\left(a_{1}-1\right)+\sum_{i \geq 1} a_{2 i+1} q_{2 i}=\left(q_{2\left\lfloor\frac{n}{2}\right\rfloor+1}-1\right)_{n \geq 1}
\end{gathered}
$$

Application to the computation of the repetition function: For $m \in I_{n}^{\ell}$, with $n \geq 0$ and $0 \leq \ell \leq a_{n+1}-1$. We write $m=(\ell+1) q_{n}+q_{n-1}-2-r$ where r is the length of the common part of G_{m}. Then we have :

- $r\left(T^{\rho_{n+1}}\left(c_{\alpha}\right), m\right)=q_{n}$ for $q_{n} \leq m \leq q_{n+1}-2-\rho_{n+1}$
- $r\left(T^{\rho_{n+1}}\left(c_{\alpha}\right), m\right)=q_{n+1}-\rho_{n+1}$ for

$$
q_{n+1}-1-\rho_{n+1} \leq m \leq(\ell+1) q_{n}+q_{n-1}-2
$$

- $r\left(T^{\rho_{n+1}}\left(c_{\alpha}\right), m\right)=\ell q_{n}+q_{n-1}$ for

$$
(\ell+1) q_{n}+q_{n-1}-1 \leq m \leq q_{n+1}-\rho_{n+1}+q_{n}-2
$$

- $r\left(T^{\rho_{n+1}}\left(c_{\alpha}\right), m\right)=q_{n+1}-\rho_{n+1}+q_{n}$ for

$$
q_{n+1}-\rho_{n+1}+q_{n}-1 \leq m \leq q_{n+1}-2 .
$$

(1) Introduction

(2) Basic properties of Sturmian words
(3) Rauzy graphs and repetition function

4 Formal intercepts of Sturmian words
(5) Factorisation, extensions and prefix-suffix duality

Let ρ be a formal intercept.
For $k \geq 0$, we define $\rho+k$ as the formal intercept of the Sturmian word $T^{k}\left(T^{\rho}\left(c_{\alpha}\right)\right)$.
We say that two formal intercepts ρ and γ are equivalent when there exists $k, \ell \geq 0$ such that $\rho+k=\gamma+\ell$.

Lemma

Let ρ be a formal intercept and $k \geq 0$ such that $\rho+k$ is not a natural number. Then there exists $N \geq 0$ such that for all $n \geq N$,

$$
\Psi_{n}(\rho+k)=\Psi_{n}(\rho)+k
$$

Let $\rho=\sum_{i \geq 0} b_{i+1} q_{i}$ be a formal intercept. The following are equivalent :
i) ρ is equivalent to zero,
ii) one of the two sequences $\left(\Psi_{n}(\rho)\right)_{n \geq 0}$ or $\left(q_{n}-\Psi_{n}(\rho)\right)_{n \geq 0}$ converges,
iii) One of the following holds:

- $b_{i}=0$ for $i \geq 1$ large enough,
- $b_{2 i}=a_{2 i}$ and $b_{2 i+1}=0$ for $i \geq 1$ large enough,
- $b_{2 i}=0$ and $b_{2 i+1}=a_{2 i+1}$ for $i \geq 1$ large enough.

Let $\rho=\sum_{i \geq 0} b_{i+1} q_{i}$ and $\gamma=\sum_{i \geq 0} c_{i+1} q_{i}$ be two formal intercept not equivalent to zero. Then ρ and γ are equivalent if and only if

$$
b_{i}=c_{i} \quad \text { for } i \geq 1 \text { large enough. }
$$

Let $\rho=\sum_{i \geq 0} b_{i+1} q_{i}$ be a formal intercept not a natural number. We define the support $\operatorname{Supp}(\rho)$ of ρ as

$$
\operatorname{Supp}(\rho)=\left\{n \geq 0 \mid b_{n+1} \neq 0\right\}
$$

and the function Λ_{ρ} as :

$$
\Lambda_{\rho}(n)=\min (\operatorname{Supp}(\rho) \cap[n,+\infty[)
$$

Let $n \geq 0$, and ρ a formal intercept. Then

- $n \in \operatorname{Supp}(\rho)$ if and only if $\Psi_{n+1}(\rho) \geq q_{n}$, and we have :

$$
\Psi_{\Lambda_{\rho}(n)+1}(\rho) \geq q_{\Lambda_{\rho}(n)} \geq q_{n}
$$

- If $n \in \operatorname{Supp}(\rho)$, then $b_{n+2} \neq a_{n+2}$, and we have:

$$
\Psi_{\Lambda_{\rho}(n)+2}(\rho)<q_{\Lambda_{\rho}(n)+2}-q_{\Lambda_{\rho}(n)}=a_{\Lambda_{\rho}(n)+2} q_{\Lambda_{\rho}(n)+1}
$$

- $\Psi_{\Lambda_{\rho}(n)+1}(\rho)=b_{\Lambda_{\rho}(n)+1} q_{\Lambda_{\rho}(n)}+\Psi_{n}(\rho)$

Let $m=\sum_{i=0}^{N} b_{i+1} q_{i}$, where the $\left(b_{i}\right)^{\prime} s$ satisfy the Ostrowski conditions. Then :

$$
\mathbb{P}_{m}\left(c_{\alpha}\right)=\prod_{i=0}^{N \downarrow} s_{i}^{b_{i+1}}=s_{N}^{b_{N+1}} s_{N-1}^{b_{N}} \ldots s_{0}^{b_{1}}
$$

Let $m, p \geq 1$ be such that $m+p=q_{N+1}-2$, with :

$$
m=\sum_{i=0}^{N} b_{i+1} q_{i} \quad \text { et } \quad p=\sum_{i=0}^{N} c_{i+1} q_{i}
$$

where the $\left(b_{i}\right)_{i=1}^{N+1}$ et $\left(c_{i}\right)_{i=1}^{N+1}$ satisfy the Ostrowski conditions. Then we have the product formula :

$$
s_{N+1}^{--}=\prod_{i=0}^{\downarrow} s_{i}^{b_{i+1}} \cdot \prod_{i=0}^{N} \widetilde{s}_{i}^{c_{i+1}}
$$

Definition

Let $\rho=\sum_{i \geq 0} b_{i+1} q_{i}$ be a formal intercept not a natural number. We define the Sturmian word $\widetilde{\mathbb{P}_{\rho}}\left(c_{\alpha}\right)$ as the infinite product

$$
\widetilde{\mathbb{P}_{\rho}}\left(c_{\alpha}\right)=\prod_{i=0}^{+\infty} \widetilde{s}_{i}^{b_{i+1}}=\lim _{N \rightarrow+\infty} \prod_{i=0}^{N} \widetilde{s}_{i}^{b_{i+1}}=\lim _{N \rightarrow+\infty} \widetilde{\mathbb{P}_{\Psi_{N}(\rho)}}\left(c_{\alpha}\right) .
$$

Theorem

Let $\rho=\sum_{i \geq 0} b_{i+1} q_{i}$ be a formal intercept not a natural number. The formal intercept of $\widetilde{\mathbb{P}_{\rho}}\left(c_{\alpha}\right)$ is given by the sequence

$$
\left(\Psi_{n}\left(q_{\Lambda_{\rho}(n)+1}-2-\rho_{\Lambda_{\rho}(n)+1}\right)\right)_{n \geq 0} .
$$

Application: By applying the preceeding computation to the two formal intercepts of the words $01 c_{\alpha}$ and $10 c_{\alpha}$, we obtain the following factorisation for the characteristic word c_{α} :

- If $a_{1} \geq 2$, then :

$$
c_{\alpha}={\widetilde{s_{0}}}^{a_{1}-2} \prod_{i \geq 1}{\widetilde{s_{2 i}}}^{a_{2 i+1}} \text { and } c_{\alpha}={\widetilde{s_{0}}}^{a_{1}-1}{\widetilde{s_{1}}}^{a_{2}-1} \prod_{i \geq 1}{\widetilde{s_{2 i+1}}}^{a_{2 i+2}}
$$

- If $a_{1}=1$ and $a_{2} \geq 2$, then :

$$
c_{\alpha}={\widetilde{s_{1}}}^{a_{2}-2}{\widetilde{s_{2}}}^{a_{3}-1} \prod_{i \geq 2}{\widetilde{s_{2 i}}}^{a_{2 i+1}} \text { and } c_{\alpha}={\widetilde{s_{1}}}^{a_{2}-2} \prod_{i \geq 1}{\widetilde{s_{2 i+1}}}^{a_{2 i+2}}
$$

- If $a_{1}=1$ and $a_{2}=1$, then :

$$
c_{\alpha}={\widetilde{s_{2}}}^{a_{3}-1} \prod_{i \geq 2}{\widetilde{s_{2 i}}}^{a_{2 i+1}} \text { and } c_{\alpha}=\prod_{i \geq 1}{\widetilde{s_{2 i+1}}}^{a_{2 i+2}}
$$

For ρ a formal intercept not a natural number, we define the formal intercept $\bar{\rho}$ as the formal intercept of $\mathbb{P}_{\rho}\left(c_{\alpha}\right)$, given by the sequence :

$$
\Psi_{n}(\bar{\rho})=\Psi_{n}\left(q_{\Lambda_{\rho}(n)+1}-2-\Psi_{\Lambda_{\rho}(n)+1}(\rho)\right),
$$

and call it the complement of ρ.
technical lemma: If ρ is not equivalent to zero, then $\bar{\rho}$ is not equivalent to zero either.

Also we have the formula :

$$
T\left(\widetilde{\mathbb{P}}_{\rho+1}\left(c_{\alpha}\right)\right)=\widetilde{\mathbb{P}}_{\rho}\left(c_{\alpha}\right)
$$

And as a consequence, for all $k \geq 0$, we have :

$$
\overline{\rho+k}+k=\bar{\rho} .
$$

Theorem

The map $\rho \longmapsto \bar{\rho}$, from the set of formal intercept not equivalent to zero to itself is an involution. Hence the reciprocity formula :

$$
T^{\rho}\left(c_{\alpha}\right)=\widetilde{\mathbb{P}_{\bar{\rho}}}\left(c_{\alpha}\right)
$$

Moreover, the bi-infinite word

$$
\widetilde{T^{\bar{\rho}}\left(c_{\alpha}\right)} \cdot T^{\rho}\left(c_{\alpha}\right)
$$

is a Sturmian orbit.
Note: This is the prefix-suffix duality for Sturmian words... ! As a consequence, the set of non-trivial dynamical orbit orbit of the characteristic Sturmian word of slope α is in a natural correspondence with the set of non-zero equivalence classes of formal intercepts of the slope α.

Application :

- Let x be a Sturmian word of slope α. The following are equivalent :
i) x is a suffix of $0 c_{\alpha}$ or $1 c_{\alpha}$,
ii) There exists two distincts formal intercepts ρ and γ such that

$$
x=\widetilde{\mathbb{P}_{\rho}}\left(c_{\alpha}\right)=\widetilde{\mathbb{P}_{\gamma}}\left(c_{\alpha}\right)
$$

- Let x be a Sturmian word of slope α. The following are equivalent:
i) One of the two words $01 c_{\alpha}$ and $10 c_{\alpha}$ is a suffix of x.
ii) The word x has no factorisation of the form :

$$
x=\widetilde{\mathbb{P}_{\rho}}\left(c_{\alpha}\right)
$$

for a formal intercept ρ.

$---===\equiv \equiv$ THE END $\equiv \equiv \equiv===---$

Thank you for your attention!

