Inflation of digitally convex polyominoes

Jean-Pierre Borel, Lama Tarsissi , Laurent Vuillon

Journées Montoises, LABRI,

14-09-2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Outline

- Transformations of digitally convex polyominoes
- Intuitive approach
- Another approach with combinatorics on words

The continuous version of convexity

Definition

A set in Euclidean geometry is convex if and only if for any pair of points p_1 , p_2 in a region R, the line segment joining them is completely included in R.

What about the discrete version?

イロト イロト イヨト イヨ

・ロト ・日子・ ・ヨト・

14-09-2018 4 / 27

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^2 .

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^2 .

イロト イポト イヨト イヨト

Definition

A polyomino P is a digitally convex polyomino (DC) if its convex hull contains no integer point outside P.

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^2 .

Definition

A polyomino P is a digitally convex polyomino (DC) if its convex hull contains no integer point outside P.

Outline

Deflate DC polyominoes

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:

An empty set to a convex

 \bigcirc a small C_1 into a bigger C_2

・ロト ・回ト ・ヨト ・

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:

 $\mathit{MA} = \lambda \; \mathit{AB}$; $\lambda \in [0,1]$

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How can we do it in the digital case?

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:

An empty set to a convex

2 a small C_1 into a bigger C_2

How can we do it in the digital case?

As in the continuous case, we have the expansion from an interior pixel by adding

pixel by pixel.

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

However, it does not give a practical way to choose the unit square that we must add at each step.

イロト イポト イヨト イヨ

Outline

Inflate DC polyominoes

The spiral construction

							16			
10	11	12	13			15	7	17		
9	2	3	14		14	6	2	8	18	
8	1	4	15		13	5	1	3	9	19
7	6	5	16			12	4	10		
	19	18	17				11			

• By adding a corner around the polyomino from a unit square polyomino

Oby adding at each step a corner in a clockwise order

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The spiral construction

							16			
10	11	12	13			15	7	17		
9	2	3	14		14	6	2	8	18	
8	1	4	15		13	5	1	3	9	19
7	6	5	16			12	4	10		
	19	18	17				11			

• By adding a corner around the polyomino from a unit square polyomino

Oby adding at each step a corner in a clockwise order

This construction leads to an octogonal shape digitally convex polyomino.

Strate construction

- It consists to take the lowest unit squares from the left to the right,
- It continues to the second row in a correct order.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Strate construction

- It consists to take the lowest unit squares from the left to the right,
- It continues to the second row in a correct order.

BUT!!

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- the spiral method works only when we take special octogones,
- the convexity property disappears at some step, in the general case.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- the spiral method works only when we take special octogones,
- the convexity property disappears at some step, in the general case.

Question: How can we solve this problem?

- * 伊 * * ミ * *

17e journées montoises d'informatique théorique 10-14 sept. 2018 Talence (France)

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

- Combinatorics on words
- Inflation of a DC polyomino with discrete geometry
- Conclusion

A I > A I > A

Lyndon words

Roger Lyndon in 1954, introduced the Standard Lexicographic sequences.

Definition

A $w \in A^+$ is a Lyndon word if it is the smallest between all its conjugates with respect to the lexicographic order.

Lyndon factorization

Theorem (Chen-Fox 1954)

Every non empty word w admits a unique factorization as a lexicographically decreasing sequence of Lyndon words.

 $w = l_1^{n_1} l_2^{n_2} \cdots l_k^{n_k}$, s.t $l_1 >_l l_2 >_l \cdots l_k$ where $n_i \ge 1$ and l_i are Lyndon words.

(日) (同) (三) (三)

Lyndon factorization

Theorem (Chen-Fox 1954)

Every non empty word w admits a unique factorization as a lexicographically decreasing sequence of Lyndon words.

 $w = l_1^{n_1} l_2^{n_2} \cdots l_k^{n_k}$, s.t $l_1 >_l l_2 >_l \cdots l_k$ where $n_i \ge 1$ and l_i are Lyndon words.

Example

Let w = 100101100101010, the Lyndon factorization is given as follows:

w = (1)(001011)(0010101)(0).

イロト イポト イヨト イヨト

Christoffel words

• The closest path to the line segment.

2 There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Christoffel words

The closest path to the line segment.

2 There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Figure: The line segment from O(0,0) to (8,5) has the following Christoffel word: w = 0010010100101 of slope $\frac{5}{8}$.

Christoffel words

• The closest path to the line segment.

2 There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Figure: The line segment from O(0,0) to (8,5) has the following Christoffel word: w = 0010010100101 of slope $\frac{5}{8}$.

• • • • • • • • • • • •

- The border of a DC polyomino S, Bd(S), is the 4-connected path that follows clockwise the points of S that are 8-adjacent to some points not in S.
- This path is a word in {0,1,0,1}*, starting by convention from the leftmost lower point considered in the clockwise order.

- The border of a DC polyomino S, Bd(S), is the 4-connected path that follows clockwise the points of S that are 8-adjacent to some points not in S.
- This path is a word in {0,1,0,1}*, starting by convention from the leftmost lower point considered in the clockwise order.

The word $w \in A$ coding the WN path is w = 10100101.

Lama Tarsissi

Inflation of digitally convex polyominoes

14-09-2018 17 / 27

$Lyndon + Christoffel = Digitally Convex^{\star}$

S. Brlek^a, J.-O. Lachaud^b, X. Provençal^a, C. Reutenauer^a,

^aLaCIM, Université du Québec à Montréal, C. P. 8888 Succursale "Centre-Ville", Montréal (QC), CANADA H3C 3P8 ^bLaboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac, France

イロト イポト イヨト イヨ

$Lyndon + Christoffel = Digitally Convex^{\star}$

S. Brlek^a, J.-O. Lachaud^b, X. Provençal^a, C. Reutenauer^a,

^aLaCIM, Université du Québec à Montréal, C. P. 8888 Succursale "Centre-Ville", Montréal (QC), CANADA H3C 3P8 ^bLaboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac, France

Theorem (B,L,P,R 2010)

A word w is WN -convex iff its unique Lyndon factorization $l_1^{n_1} l_2^{n_2} \dots l_k^{n_k}$ is such that all l_i are Christoffel words.

イロト イポト イヨト イヨト

Consider the following WN-convex path v = 1011010100010.

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

$$v = (1)^1 (011)^1 (01)^2 (0001)^1 (0)^1.$$

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

$$v = (1)^1 (011)^1 (01)^2 (0001)^1 (0)^1.$$

where 1, 011, 01, 0001 and 0 are all Christoffel words.

・ロト ・回ト ・ヨト ・

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

$$v = (1)^1 (011)^1 (01)^2 (0001)^1 (0)^1.$$

where 1, 011, 01, 0001 and 0 are all Christoffel words. The Christoffel words are arranged in a decreasing order of slopes.

▲ @ ▶ ▲ ≥ ▶ ▲

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

$$v = (1)^1 (011)^1 (01)^2 (0001)^1 (0)^1.$$

where 1, 011, 01, 0001 and 0 are all Christoffel words. The Christoffel words are arranged in a decreasing order of slopes.

$$\frac{1}{0} > \frac{2}{1} > \frac{1}{1} > \frac{1}{1} > \frac{1}{3} > \frac{0}{1}$$

▲ @ ▶ ▲ ≥ ▶ ▲

Outline

• Inflation of a DC polyomino with discrete geometry

Lama Tarsissi

Inflation of digitally convex polyominoes

14-09-2018 20 / 27

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:

 P the closest point to the line segment on the Christoffel path. (Standard factorization)

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:

- P the closest point to the line segment on the Christoffel path. (Standard factorization)
- Q the furthest point from the line segment on the Christoffel path. (Palindromic factorization)

Split operator

Let w be a Christoffel word of length I.

The furthest point of the path from the line segment is at position k.

At this position, we have: w[k] = 0 and w[k+1] = 1.

The split operator exchanges the factor 01 into 10

Proposition (Tarsissi et al. 17)

The words $w^+ = w[1, k - 1]1$ and $w^- = 0w[k + 1, l]$, are two Christoffel words. We have: $w^+ > w^-$.

・ロト ・四ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

• The Christoffel word of slope $\frac{5}{8}$ is given by: $w = (w_1, w_2)$,

・ロト ・回ト ・ヨト ・ヨ

The Christoffel word of slope ⁵/₈ is given by: w = (w₁, w₂),
 w⁺ = 00101 and w⁻ = 00100101 are Christoffel words with:

$$\frac{2}{3} > \frac{3}{5}$$

Let $u = \ldots \ell'' \ell \ell' \ldots$ be a part of the *WN* path of DC.

 $\ell" \geq \ell \geq \ell'$

Let $u = \ldots \ell'' \ell \ell' \ldots$ be a part of the *WN* path of DC.

$$\ell'' \ge \ell \ge \ell'$$

By splitting ℓ , we get: $\ell'' \ge_{?} \ell^{+} > \ell^{-} \ge_{?} \ell'$ and three cases are to be considered:

・ロト ・日子・ ・ヨト・

Inflation of a DC by adding one unit square Let $u = \dots \ell'' \ell \ell' \dots$ be a part of the *WN* path of DC.

 $\ell" \geq \ell \geq \ell'$

By splitting ℓ , we get: $\ell'' \ge_{?} \ell^{+} > \ell^{-} \ge_{?} \ell'$ and three cases are to be considered:

(日) (同) (三) (

Let $u = \ldots \ell'' \ell \ell' \ldots$ be a part of the *WN* path of DC.

 $\ell" \geq \ell \geq \ell'$

By splitting ℓ , we get: $\ell'' \ge_? \ell^+ > \ell^- \ge_? \ell'$ and three cases are to be considered:

Let $u = \ldots \ell'' \ell \ell' \ldots$ be a part of the *WN* path of DC.

 $\ell" \geq \ell \geq \ell'$

By splitting ℓ , we get: $\ell'' \ge_{?} \ell^{+} > \ell^{-} \ge_{?} \ell'$ and three cases are to be considered:

() The convexity is conserved: $\ell'' \ge \ell^+ > \ell^- \ge \ell'$

Let $u = \ldots \ell'' \ell \ell' \ldots$ be a part of the *WN* path of DC.

 $\ell" \geq \ell \geq \ell'$

By splitting ℓ , we get: $\ell'' \geq_? \ell^+ > \ell^- \geq_? \ell'$ and three cases are to be considered:

 $\ \ \, {\rm Ombox{ the convexity is conserved: } } \ell'' \geq \ell^+ > \ell^- \geq \ell'$

e must choose the longest word to split

・ロト ・回ト ・ヨト ・

イロト イヨト イヨト イヨ

• The convexity is not conserved by adding a single point.

Let
$$slope(l_i) = \frac{3}{5} \ge slope(l_{i+1}) = \frac{11}{20}$$
.
The spliting of (l_i) gives $\frac{2}{3} > \frac{1}{2} < \frac{11}{20}$.

On the convexity is not conserved by adding a single point.

Let
$$slope(I_i) = \frac{3}{5} \ge slope(I_{i+1}) = \frac{11}{20}$$
.
The spliting of (I_i) gives $\frac{2}{3} > \frac{1}{2} < \frac{11}{20}$.

・ロト ・日子・ ・ヨト・

Conclusion

Corollary

The cases 1 or 2 occur essentially when:

a) l' ≤ l⁻ or l' = l^{-k}l for some positive integer k and a Christoffel word l,
b) l" ≥ l⁺ or l" = ll^{+k'} for some positive integer k' and a Christoffel word l.

Conclusion

Corollary

The cases 1 or 2 occur essentially when:

a) l' ≤ l⁻ or l' = l^{-k}l for some positive integer k and a Christoffel word l,
b) l" ≥ l⁺ or l" = ll^{+k'} for some positive integer k' and a Christoffel word l.

By choosing for ℓ the longest word of WN-path, then automatically we have:

$$\ell'' \ge \ell^+ > \ell^- \ge \ell'$$

There always exists in each of the four paths describing C_1 at least one Christoffel word corresponding to the cases 1 or 2.

イロト イポト イヨト イヨ

Conclusion

Corollary

The cases 1 or 2 occur essentially when:

a) l' ≤ l⁻ or l' = l^{-k}l for some positive integer k and a Christoffel word l,
b) l" ≥ l⁺ or l" = ll^{+k'} for some positive integer k' and a Christoffel word l.

By choosing for ℓ the longest word of WN-path, then automatically we have:

$$\ell'' \ge \ell^+ > \ell^- \ge \ell'$$

There always exists in each of the four paths describing C_1 at least one Christoffel word corresponding to the cases 1 or 2.

The inlation by keeping $C_1 \subset C_2$ is always possible.

・ロト ・ 同ト ・ モト・・ モ

• Write and run the corresponding algorithm of this result.

• Write and run the corresponding algorithm of this result.

• Test its cost in time and complexity?

• Write and run the corresponding algorithm of this result.

• Test its cost in time and complexity?

• Compare it to some algorithms of inflation that don't involve combinatorics on words.

• Write and run the corresponding algorithm of this result.

• Test its cost in time and complexity?

• Compare it to some algorithms of inflation that don't involve combinatorics on words.

Thank You