Inflation of digitally convex polyominoes

Jean-Pierre Borel, Lama Tarsissi , Laurent Vuillon

Journées Montoises, LABRI,

14-09-2018

Outline

- Transformations of digitally convex polyominoes
- Intuitive approach
- Another approach with combinatorics on words

The continuous version of convexity

Convex region

non-convex region

Definition

A set in Euclidean geometry is convex if and only if for any pair of points p_{1}, p_{2} in a region R, the line segment joining them is completely included in R.

What about the discrete version?

What about the discrete version? This notion refers to digitally convex convexity.

What about the discrete version? This notion refers to digitally convex convexity.

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^{2}.

What about the discrete version? This notion refers to digitally convex convexity.

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^{2}.

Definition

A polyomino P is a digitally convex polyomino (DC) if its convex hull contains no integer point outside P.

What about the discrete version? This notion refers to digitally convex convexity.

Definition

A polyomino is a finite 4-connected set of unit squares in the lattice \mathbb{Z}^{2}.

Definition

A polyomino P is a digitally convex polyomino (DC) if its convex hull contains no integer point outside P.

Outline

- Deflate DC polyominoes

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:
(1) An empty set to a convex
(c) a small C_{1} into a bigger C_{2}

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:
(1) An empty set to a convex
(2) a small C_{1} into a bigger C_{2}

$$
M A=\lambda A B ; \lambda \in[0,1]
$$

How can we do it in the digital case?

Inflate and deflate of convexes

It can be done in the slowlest way by passing from:
(1) An empty set to a convex
(c) a small C_{1} into a bigger C_{2}

How can we do it in the digital case?
As in the continuous case, we have the expansion from an interior pixel by adding
pixel by pixel.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P , we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P, we do it step by step by removing one unit square at each time.

Deflate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To deflate P , we do it step by step by removing one unit square at each time.

However, it does not give a practical way to choose the unit square that we must add at each step.

Outline

- Inflate DC polyominoes

The spiral construction

										16			
	10	11	12	13					15	7	17		
	9	2	3	14				14	6	2	8	18	
	8	1	4	15				13	5	1	3	9	19
	7	6	5	16					12	4	10		
		19	18	17						11			

(1) By adding a corner around the polyomino from a unit square polyomino
(2) by adding at each step a corner in a clockwise order

The spiral construction

										16			
	10	11	12	13					15	7	17		
	9	2	3	14				14	6	2	8	18	
	8	1	4	15				13	5	1	3	9	19
	7	6	5	16					12	4	10		
		19	18	17						11			

(1) By adding a corner around the polyomino from a unit square polyomino
(2) by adding at each step a corner in a clockwise order

This construction leads to an octogonal shape digitally convex polyomino.

Strate construction

(1) It consists to take the lowest unit squares from the left to the right,
(2) it continues to the second row in a correct order.

Strate construction

(1) It consists to take the lowest unit squares from the left to the right,
(2) it continues to the second row in a correct order.

BUT!!

- the spiral method works only when we take special octogones,
- the convexity property disappears at some step, in the general case.

- the spiral method works only when we take special octogones,
- the convexity property disappears at some step, in the general case.

Question:How can we solve this problem?

A WAY WITH WORDS

17e journées montoises d'informatique théorique

10-14 sept. 2018 Talence (France)

Outline

- Combinatorics on words
- Inflation of a DC polyomino with discrete geometry
- Conclusion

Lyndon words

Roger Lyndon in 1954, introduced the Standard Lexicographic sequences.

0001
0010
0100
1000

1111

Definition

A $w \in A^{+}$is a Lyndon word if it is the smallest between all its conjugates with respect to the lexicographic order.

Lyndon factorization

Theorem (Chen-Fox 1954)

Every non empty word w admits a unique factorization as a lexicographically decreasing sequence of Lyndon words. $w=l_{1}^{n_{1}} l_{2}^{n_{2}} \cdots l_{k}^{n_{k}}$, s.t $l_{1}>_{l} l_{2}>_{1} \cdots l_{k}$ where $n_{i} \geq 1$ and l_{i} are Lyndon words.

Lyndon factorization

Theorem (Chen-Fox 1954)

Every non empty word w admits a unique factorization as a lexicographically decreasing sequence of Lyndon words. $w=l_{1}^{n_{1}} l_{2}^{n_{2}} \cdots l_{k}^{n_{k}}$, s.t $l_{1}>_{l} l_{2}>_{1} \cdots l_{k}$ where $n_{i} \geq 1$ and l_{i} are Lyndon words.

Example

Let $w=100101100101010$, the Lyndon factorization is given as follows:

$$
w=(1)(001011)(0010101)(0) .
$$

Christoffel words

(1) The closest path to the line segment.
(2) There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Christoffel words

(1) The closest path to the line segment.
(2) There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Figure: The line segment from $O(0,0)$ to $(8,5)$ has the following Christoffel word: $w=0010010100101$ of slope $\frac{5}{8}$.

Christoffel words

(1) The closest path to the line segment.
(2) There are no points of $\mathbb{Z} \times \mathbb{Z}$ between the path and line segment.

Figure: The line segment from $O(0,0)$ to $(8,5)$ has the following Christoffel word: $w=0010010100101$ of slope $\frac{5}{8}$.

- The border of a DC polyomino S, $\mathrm{Bd}(\mathrm{S})$, is the 4 -connected path that follows clockwise the points of S that are 8 -adjacent to some points not in S.
- This path is a word in $\{0,1, \overline{0}, \overline{1}\}^{*}$, starting by convention from the leftmost lower point considered in the clockwise order.

- The border of a DC polyomino S, $\mathrm{Bd}(\mathrm{S})$, is the 4-connected path that follows clockwise the points of S that are 8 -adjacent to some points not in S .
- This path is a word in $\{0,1, \overline{0}, \overline{1}\}^{*}$, starting by convention from the leftmost lower point considered in the clockwise order.

The word $w \in A$ coding the WN path is $w=10100101$.

Lyndon + Christoffel = Digitally Convex *

S. Brlek ${ }^{\text {a }}$, J.-O. Lachaud ${ }^{\text {b }}$, X. Provençal ${ }^{\text {a }}$, C. Reutenauer ${ }^{\text {a }}$,
${ }^{\text {a }}$ LaCIM, Université du Québec à Montréal,
C. P. 8888 Succursale "Centre-Ville", Montréal (QC), CANADA H3C 3P8
${ }^{\mathrm{b}}$ Laboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac, France

Lyndon + Christoffel $=$ Digitally Convex *

S. Brlek ${ }^{\text {a }}$, J.-O. Lachaud ${ }^{\text {b }}$, X. Provençal ${ }^{\text {a }}$, C. Reutenauer ${ }^{\text {a }}$,
${ }^{\text {a }}$ LaCIM, Université du Québec à Montréal,
C. P. 8888 Succursale "Centre-Ville", Montréal (QC), CANADA H3C 3P8
${ }^{\mathrm{b}}$ Laboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac, France

Theorem (B,L,P,R 2010)

A word w is $W N$-convex iff its unique Lyndon factorization $I_{1}^{n_{1}} l_{2}^{n_{2}} \ldots I_{k}^{n_{k}}$ is such that all l_{i} are Christoffel words.

Example

Consider the following WN-convex path $v=1011010100010$.

Example

Consider the following WN-convex path $v=1011010100010$.

The Lyndon factorization of v is:

Example

Consider the following WN-convex path $v=1011010100010$.

The Lyndon factorization of v is:

$$
v=(1)^{1}(011)^{1}(01)^{2}(0001)^{1}(0)^{1} .
$$

Example

Consider the following WN-convex path $v=1011010100010$.

The Lyndon factorization of v is:

$$
v=(1)^{1}(011)^{1}(01)^{2}(0001)^{1}(0)^{1} .
$$

where 1, 011, 01, 0001 and 0 are all Christoffel words.

Example

Consider the following WN-convex path $v=1011010100010$.

The Lyndon factorization of v is:

$$
v=(1)^{1}(011)^{1}(01)^{2}(0001)^{1}(0)^{1} .
$$

where $1,011,01,0001$ and 0 are all Christoffel words. The Christoffel words are arranged in a decreasing order of slopes.

Example

Consider the following WN-convex path $v=1011010100010$.

The Lyndon factorization of v is:

$$
v=(1)^{1}(011)^{1}(01)^{2}(0001)^{1}(0)^{1} .
$$

where 1, 011, 01, 0001 and 0 are all Christoffel words. The Christoffel words are arranged in a decreasing order of slopes.

$$
\frac{1}{0}>\frac{2}{1}>\frac{1}{1}>\frac{1}{3}>\frac{0}{1}
$$

Outline

- Inflation of a DC polyomino with discrete geometry

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:
(1) P the closest point to the line segment on the Christoffel path. (Standard factorization)

Particular points

By Borel and Laubie (BL1993), we have the uniqueness of the following two points:
(1) P the closest point to the line segment on the Christoffel path. (Standard factorization)
(2) Q the furthest point from the line segment on the Christoffel path.
(Palindromic factorization)

Split operator

Let w be a Christoffel word of length I.

The furthest point of the path from the line segment is at position k.
At this position, we have: $w[k]=0$ and $w[k+1]=1$.
The split operator exchanges the factor 01 into 10

Proposition (Tarsissi et al. 17)

The words $w^{+}=w[1, k-1] 1$ and $w^{-}=0 w[k+1, l]$, are two Christoffel words. We have: $w^{+}>w^{-}$.

Example

Example

(1) The Christoffel word of slope $\frac{5}{8}$ is given by: $w=\left(w_{1}, w_{2}\right)$,

Example

(1) The Christoffel word of slope $\frac{5}{8}$ is given by: $w=\left(w_{1}, w_{2}\right)$,
(2) $w^{+}=00101$ and $w^{-}=00100101$ are Christoffel words with:

$$
\frac{2}{3}>\frac{3}{5} .
$$

Inflation of a DC by adding one unit square

Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of DC.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

Inflation of a DC by adding one unit square

Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of DC.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

By splitting ℓ, we get: $\ell^{\prime \prime} \geq$? $\ell^{+}>\ell^{-} \geq$? ℓ^{\prime} and three cases are to be considered:

Inflation of a DC by adding one unit square
Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of DC.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

By splitting ℓ, we get: $\ell^{\prime \prime} \geq$? $\ell^{+}>\ell^{-} \geq$? ℓ^{\prime} and three cases are to be considered:

Inflation of a DC by adding one unit square

Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of DC.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

By splitting ℓ, we get: $\ell^{\prime \prime} \geq$? $\ell^{+}>\ell^{-} \geq$? ℓ^{\prime} and three cases are to be considered:

Inflation of a DC by adding one unit square

Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of DC.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

By splitting ℓ, we get: $\ell^{\prime \prime} \geq$? $\ell^{+}>\ell^{-} \geq$? ℓ^{\prime} and three cases are to be considered:

(1) The convexity is conserved: $\ell^{\prime \prime} \geq \ell^{+}>\ell^{-} \geq \ell^{\prime}$

Inflation of a DC by adding one unit square

Let $u=\ldots \ell^{\prime \prime} \ell \ell^{\prime} \ldots$ be a part of the $W N$ path of $D C$.

$$
\ell^{\prime \prime} \geq \ell \geq \ell^{\prime}
$$

By splitting ℓ, we get: $\ell^{\prime \prime} \geq$? $\ell^{+}>\ell^{-} \geq$? ℓ^{\prime} and three cases are to be considered:
(1) The convexity is conserved: $\ell^{\prime \prime} \geq \ell^{+}>\ell^{-} \geq \ell^{\prime}$

(2) we must choose the longest word to split
(3) The convexity is not conserved by adding a single point.
(3) The convexity is not conserved by adding a single point.

Example

Let $\operatorname{slope}\left(I_{i}\right)=\frac{3}{5} \geq \operatorname{slope}\left(I_{i+1}\right)=\frac{11}{20}$.
The spliting of $\left(l_{i}\right)$ gives $\frac{2}{3}>\frac{1}{2}<\frac{11}{20}$.

- The convexity is not conserved by adding a single point.

Example
Let $\operatorname{slope}\left(I_{i}\right)=\frac{3}{5} \geq \operatorname{slope}\left(I_{i+1}\right)=\frac{11}{20}$.
The spliting of $\left(l_{i}\right)$ gives $\frac{2}{3}>\frac{1}{2}<\frac{11}{20}$.

$$
\begin{aligned}
I_{i}^{-} . I_{i+1} & =001.0010010010010010100100100100101 \\
& =0010010010010010100100100100100101 .
\end{aligned}
$$

Conclusion

Corollary

The cases 1 or 2 occur essentially when:
a) $\ell^{\prime} \leq \ell^{-}$or $\ell^{\prime}=\ell^{-k} \ell$ for some positive integer k and a Christoffel word ℓ, b) $\ell^{\prime \prime} \geq \ell^{+}$or $\ell^{\prime \prime}=\ell \ell^{+k^{\prime}}$ for some positive integer k^{\prime} and a Christoffel word ℓ.

Conclusion

Corollary

The cases 1 or 2 occur essentially when:
a) $\ell^{\prime} \leq \ell^{-}$or $\ell^{\prime}=\ell^{-k} \ell$ for some positive integer k and a Christoffel word ℓ, b) $\ell^{\prime \prime} \geq \ell^{+}$or $\ell^{\prime \prime}=\ell \ell^{+k^{\prime}}$ for some positive integer k^{\prime} and a Christoffel word ℓ.

By choosing for ℓ the longest word of WN-path, then automatically we have:

$$
\ell^{\prime \prime} \geq \ell^{+}>\ell^{-} \geq \ell^{\prime}
$$

There always exists in each of the four paths describing C_{1} at least one Christoffel word corresponding to the cases 1 or 2 .

Conclusion

Corollary

The cases 1 or 2 occur essentially when:
a) $\ell^{\prime} \leq \ell^{-}$or $\ell^{\prime}=\ell^{-k} \ell$ for some positive integer k and a Christoffel word ℓ,
b) $\ell^{\prime \prime} \geq \ell^{+}$or $\ell^{\prime \prime}=\ell \ell^{+k^{\prime}}$ for some positive integer k^{\prime} and a Christoffel word ℓ.

By choosing for ℓ the longest word of WN-path, then automatically we have:

$$
\ell^{\prime \prime} \geq \ell^{+}>\ell^{-} \geq \ell^{\prime}
$$

There always exists in each of the four paths describing C_{1} at least one Christoffel word corresponding to the cases 1 or 2 .

The inlation by keeping $C_{1} \subset C_{2}$ is always possible.

Some aims

- Write and run the corresponding algorithm of this result.

Some aims

- Write and run the corresponding algorithm of this result.
- Test its cost in time and complexity?

Some aims

- Write and run the corresponding algorithm of this result.
- Test its cost in time and complexity?
- Compare it to some algorithms of inflation that don't involve combinatorics on words.

Some aims

- Write and run the corresponding algorithm of this result.
- Test its cost in time and complexity?
- Compare it to some algorithms of inflation that don't involve combinatorics on words.

Thank You

