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The continuous version of convexity

De�nition

A set in Euclidean geometry is convex if and only if for any pair of points p1 , p2
in a region R, the line segment joining them is completely included in R.

Lama Tarsissi In�ation of digitally convex polyominoes 14-09-2018 3 / 27



What about the discrete version?

This notion refers to digitally convex convexity.

De�nition

A polyomino is a �nite 4-connected set
of unit squares in the lattice Z2.

De�nition

A polyomino P is a digitally convex polyomino (DC) if its convex hull contains no
integer point outside P.
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In�ate and de�ate of convexes
It can be done in the slowlest way by passing from:

1 An empty set to a convex

2 a small C1 into a bigger C2

How can we do it in the digital case?

As in the continuous case, we have the expansion from an interior pixel by adding

pixel by pixel.
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De�ate of a DC polyomino P

The corners of P are the pixels such that a vertex is an angle of the convex hull.

To de�ate P, we do it step by step by removing one unit square at each time.

However, it does not give a practical way to choose the unit square that we must
add at each step.
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The spiral construction

1 By adding a corner around the polyomino from a unit square polyomino

2 by adding at each step a corner in a clockwise order

This construction leads to an octogonal shape digitally convex polyomino.
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Strate construction

1 It consists to take the lowest unit squares from the left to the right,

2 it continues to the second row in a correct order.

BUT!!
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the spiral method works only when we take special octogones,

the convexity property disappears at some step, in the general case.

Question:How can we solve this problem?
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Lyndon words

Roger Lyndon in 1954, introduced the Standard Lexicographic sequences.

De�nition

A w ∈ A+ is a Lyndon word if it is the smallest between all its conjugates with
respect to the lexicographic order.
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Lyndon factorization

Theorem (Chen-Fox 1954)

Every non empty word w admits a unique factorization as a lexicographically

decreasing sequence of Lyndon words.

w = ln1
1
ln2
2
· · · lnk

k
, s.t l1 >l l2 >l · · · lk where ni ≥ 1 and li are Lyndon words.

Example

Let w = 100101100101010, the Lyndon factorization is given as follows:

w = (1)(001011)(0010101)(0).
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Christo�el words

1 The closest path to the line segment.

2 There are no points of Z× Z between the path and line segment.

O(0,0)

(8,5)

0 0

1 0 0

1 0

1 0 0

1 0

1

Figure: The line segment from O(0, 0) to (8, 5) has the following Christo�el

word:w = 0010010100101 of slope 5

8
.
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The border of a DC polyomino S,
Bd(S), is the 4-connected path that
follows clockwise the points of S
that are 8-adjacent to some points
not in S.

This path is a word in {0, 1, 0, 1}∗,
starting by convention from the
leftmost lower point considered in
the clockwise order.

00

0000

00

00

000

1

1

1

1

1

1

1

1

0

0 0

0

0 0

0 0 0

0

0 0

0

1

1

1

1

1

1

1

1

N

E

S

W

The word w ∈ A coding the WN path is w = 10100101.
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Theorem (B,L,P,R 2010)

A word w is WN -convex i� its unique Lyndon factorization ln1
1
ln2
2
...l

nk

k
is such

that all li are Christo�el words.
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Example

Consider the following WN-convex path v = 1011010100010.

The Lyndon factorization of v is:

v = (1)1(011)1(01)2(0001)1(0)1.

where 1, 011, 01, 0001 and 0 are all Christo�el words.
The Christo�el words are arranged in a decreasing order of slopes.

1

0
>

2

1
>

1

1
>

1

3
>

0

1
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Particular points

O(0,0)

w1 Q

P
w2

(8,5)

By Borel and Laubie (BL1993), we have the uniqueness of the following two
points:

1 P the closest point to the line segment on the Christo�el path.
(Standard factorization)

2 Q the furthest point from the line segment on the Christo�el path.
(Palindromic factorization)

Lama Tarsissi In�ation of digitally convex polyominoes 14-09-2018 21 / 27



Particular points

O(0,0)

w1 Q

P
w2

(8,5)

By Borel and Laubie (BL1993), we have the uniqueness of the following two
points:

1 P the closest point to the line segment on the Christo�el path.
(Standard factorization)

2 Q the furthest point from the line segment on the Christo�el path.
(Palindromic factorization)

Lama Tarsissi In�ation of digitally convex polyominoes 14-09-2018 21 / 27



Particular points

O(0,0)

w1 Q

P
w2

(8,5)

By Borel and Laubie (BL1993), we have the uniqueness of the following two
points:

1 P the closest point to the line segment on the Christo�el path.
(Standard factorization)

2 Q the furthest point from the line segment on the Christo�el path.
(Palindromic factorization)

Lama Tarsissi In�ation of digitally convex polyominoes 14-09-2018 21 / 27



Split operator

Let w be a Christo�el word of length l .

The furthest point of the path from the line segment is at position k.

At this position, we have: w [k] = 0 and w [k + 1] = 1.

The split operator exchanges the factor 01 into 10

Proposition (Tarsissi et al. 17)

The words w+ = w [1, k − 1]1 and w− = 0w [k + 1, l ], are two Christo�el words.

We have: w+ > w−.
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Example

O(0,0)

w1 Q

P
w2

(8,5)

1 The Christo�el word of slope 5

8
is given by: w = (w1,w2),

2 w+ = 00101 and w− = 00100101 are Christo�el words with:

2

3
>

3

5
.
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In�ation of a DC by adding one unit square

Let u = . . . `”` `′ . . . be a part of the WN path of DC.

`” ≥ ` ≥ `′

By splitting `, we get: `” ≥? `
+ > `− ≥? `

′ and three cases are to be considered:

1 The convexity is conserved: `” ≥ `+ > `− ≥ `′

2 we must choose the longest word to split
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3 The convexity is not conserved by adding a single point.

Example

Let slope(li ) =
3

5
≥ slope(li+1) =

11

20
.

The spliting of (li ) gives
2

3
> 1

2
< 11

20
.

l−
i
.li+1 =001.0010010010010010100100100100101

=0010010010010010100100100100100101.
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Conclusion

Corollary

The cases 1 or 2 occur essentially when:

a) `′ ≤ `− or `′ = `−k` for some positive integer k and a Christo�el word `,

b) `” ≥ `+ or `” = ``+k
′
for some positive integer k ′ and a Christo�el word `.

By choosing for ` the longest word of WN-path, then automatically we have:

`” ≥ `+ > `− ≥ `′

There always exists in each of the four paths describing C1 at least one Christo�el
word corresponding to the cases 1 or 2.

The inlation by keeping C1 ⊂ C2 is always possible.
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Some aims

Write and run the corresponding algorithm of this result.

Test its cost in time and complexity?

Compare it to some algorithms of in�ation that don't involve combinatorics
on words.

Thank You
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