Fixed points of Sturmian morphisms and their derivated words

Karel Klouda, Kateřina Medková, Edita Pelantová, Štěpán Starosta

Czech Technical University in Prague

17e Journées montoises d'informatique théorique LaBRI, Bordeaux, September 10–14, 2018

Intro	odu	icti	ion
•0	00	0	

Remarks Open question o

Motivation I

Int	troc	du	cti	io	n
•	00	0	0		

Motivation I

its prefix 0 has exactly 2 return words $r_0 = 01$ and $r_1 = 0$

Results 0000000000 Remarks Open question o

Motivation I

its prefix 0 has exactly 2 return words $r_0 = 01$ and $r_1 = 0$

Results 0000000000 Remarks Open question o

Motivation I

its prefix 0 has exactly 2 return words $r_0 = 01$ and $r_1 = 0$

thus

 $\mathbf{u} = r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 \dots$

```
Introduction
```

Motivation I

```
its prefix 0 has exactly 2 return words r_0 = 01 and r_1 = 0
```

thus

```
\mathbf{u} = r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 \dots
```

```
Introduction
```

Motivation I

```
its prefix 0 has exactly 2 return words r_0 = 01 and r_1 = 0
```

thus

```
\mathbf{u} = r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 \dots
```

```
we rename r_i \mapsto i

\mathbf{u} = 0100101001001001010... (derivated word of \mathbf{u} with respect to

0 [F. Durand, 1998] )
```

and obtain the Fibonacci word u

```
Introduction
```

Motivation I

```
its prefix 0 has exactly 2 return words r_0 = 01 and r_1 = 0
```

thus

```
\mathbf{u} = r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_0 r_1 r_0 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 r_1 r_0 \dots
```

```
we rename r_i \mapsto i

\mathbf{u} = 010010100100101010... (derivated word of \mathbf{u} with respect to

0 [F. Durand, 1998] )
```

and obtain the Fibonacci word ${\boldsymbol{u}}$

if we take any prefix, we obtain again the Fibonacci word

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]

any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]

any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

again by [F. Durand, 1998]

if \mathbf{u} is a fixed point of a primitive morphism, then the set of all its derivated words is finite

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]

any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

again by [F. Durand, 1998]

if **u** is a fixed point of a primitive morphism, then the set of all its derivated words is finite

and yet again by **[F. Durand, 1998]** all such derivated words are fixed by a primitive morphism

Results

Remarks Open question o

Known results and our questions

[I. M. Araújo, V. Bruyère, 2005] : slopes of derivated words of standard/characteristic/homogeneous Sturmian words

Results

Remarks Open question

Known results and our questions

[I. M. Araújo, V. Bruyère, 2005] : slopes of derivated words of standard/characteristic/homogeneous Sturmian words

Our question: what are the morphisms fixing the derivated words and what is their number?

Remarks Open question o

Notation

when considering derivated words, we consider them up to a permutation of letters

Notation

when considering derivated words, we consider them up to a permutation of letters

 $Der(\mathbf{u}) = \{ \text{ derivated word of } \mathbf{u} \text{ with respect to } w : w \text{ is a prefix of } \mathbf{u} \}$

ntroduction	
0000	

Sturmian monoid

We work with these four elementary Sturmian morphisms:

$$\varphi_{a}: \begin{cases} 0 \to 0 \\ 1 \to 10 \end{cases} \qquad \varphi_{b}: \begin{cases} 0 \to 0 \\ 1 \to 01 \end{cases} \qquad \varphi_{\alpha}: \begin{cases} 0 \to 01 \\ 1 \to 1 \end{cases} \qquad \varphi_{\beta}: \begin{cases} 0 \to 10 \\ 1 \to 1 \end{cases}$$

ntroduction	
0000	

Sturmian monoid

We work with these four elementary Sturmian morphisms:

$$\varphi_{a}: \begin{cases} 0 \to 0 \\ 1 \to 10 \end{cases} \qquad \varphi_{b}: \begin{cases} 0 \to 0 \\ 1 \to 01 \end{cases} \qquad \varphi_{\alpha}: \begin{cases} 0 \to 01 \\ 1 \to 1 \end{cases} \qquad \varphi_{\beta}: \begin{cases} 0 \to 10 \\ 1 \to 1 \end{cases}$$

Set $\mathcal{M} = \langle \varphi_{a}, \varphi_{b}, \varphi_{\alpha}, \varphi_{\beta} \rangle.$

Notation: $\varphi_{w} = \varphi_{w_0} \varphi_{w_1} \cdots \varphi_{w_{|w|-1}}$, e.g., $\varphi_{a\alpha b} = \varphi_a \varphi_\alpha \varphi_b$

Sturmian monoid

We work with these four elementary Sturmian morphisms:

$$\varphi_{a}: \begin{cases} 0 \to 0 \\ 1 \to 10 \end{cases} \qquad \varphi_{b}: \begin{cases} 0 \to 0 \\ 1 \to 01 \end{cases} \qquad \varphi_{\alpha}: \begin{cases} 0 \to 01 \\ 1 \to 1 \end{cases} \qquad \varphi_{\beta}: \begin{cases} 0 \to 10 \\ 1 \to 1 \end{cases}$$

Set
$$\mathcal{M} = \langle \varphi_{a}, \varphi_{b}, \varphi_{\alpha}, \varphi_{\beta} \rangle.$$

Notation: $\varphi_{w} = \varphi_{w_0} \varphi_{w_1} \cdots \varphi_{w_{|w|-1}}$, e.g., $\varphi_{a\alpha b} = \varphi_a \varphi_\alpha \varphi_b$

The monoid \mathcal{M} has presentation

 $\varphi_{\alpha a^k \beta} = \varphi_{\beta b^k \alpha}$ and $\varphi_{a \alpha^k b} = \varphi_{b \beta^k a}$.

[P. Séébold, 1991] [C. Kassel, C. Reutenauer, 2007]

Results

Remarks Open question o

Normalized names

$$\alpha a^k \beta = \beta b^k \alpha$$
 and $a \alpha^k b = b \beta^k a$ (1)

Results

Remarks Open question o

Normalized names

$$\alpha a^k \beta = \beta b^k \alpha$$
 and $a \alpha^k b = b \beta^k a$ (1)

Set a < b, $\alpha < \beta$

Let $w \in \{a, b, \alpha, \beta\}^*$. The **normalized name** N(w) of φ_w is the lexicographically greatest word equal to w using (1)

Results

Remarks Open question o

Normalized names

$$\alpha a^k \beta = \beta b^k \alpha$$
 and $a \alpha^k b = b \beta^k a$ (1)

Set a < b, $\alpha < \beta$

Let $w \in \{a, b, \alpha, \beta\}^*$. The **normalized name** N(w) of φ_w is the lexicographically greatest word equal to w using (1)

Results

Remarks Open question o

The mapping Δ

Let $w \in \{a, b, \alpha, \beta\}^* \setminus \{a, \alpha\}^*$ be the normalized name of a morphism ψ , i.e., $\psi = \varphi_w$. We set

$$\Delta(w) = \begin{cases} N(w'a^k\beta) & \text{if } w = a^k\beta w', \\ N(w'\alpha^kb) & \text{if } w = \alpha^k bw'. \end{cases}$$

Results

Remarks Open question

Example

Consider the morphism $\psi = \varphi_w$, where $w = N(w) = \beta \alpha a a \alpha$, and apply repeatedly the transformation Δ on w.

 $w = \beta \alpha aa\alpha$ $\Delta(w) = \alpha aa\alpha\beta$ $\Delta^{2}(w) = bb\alpha\alpha\beta$ $\Delta^{3}(w) = b\beta\alpha\alpha b$ $\Delta^{4}(w) = \beta\alpha\alpha bb$ $\Delta^{5}(w) = \alpha\alpha bb\beta$ $\Delta^{6}(w) = \Delta^{3}(w)$

Results

Remarks Open question

Example

Consider the morphism $\psi = \varphi_w$, where $w = N(w) = \beta \alpha a a \alpha$, and apply repeatedly the transformation Δ on w.

$$w = \beta \alpha a a \alpha$$
$$\Delta(w) = \alpha a a \alpha \beta$$
$$\Delta^{2}(w) = b b \alpha \alpha \beta$$
$$\Delta^{3}(w) = b \beta \alpha \alpha b$$
$$\Delta^{4}(w) = \beta \alpha \alpha b b$$
$$\Delta^{5}(w) = \alpha \alpha b b \beta$$
$$\Delta^{6}(w) = \Delta^{3}(w)$$

The 5 fixed points of the morphisms

 $\varphi_{\Delta(w)}, \varphi_{\Delta^2(w)}, \varphi_{\Delta^3(w)}, \varphi_{\Delta^4(w)}, \varphi_{\Delta^5(w)}$ are exactly the five derivated words of the fixed point of ψ .

Results

Morphisms with unique fixed points

Theorem

Let $\psi \in \langle \varphi_a, \varphi_b, \varphi_\alpha, \varphi_\beta \rangle \setminus \langle \varphi_a, \varphi_\alpha \rangle$ be a primitive morphism w be its normalized name.

Denote **u** the fixed point of ψ .

The word **x** is (up to a permutation of letters) a derivated word of **u** with respect to one of its prefixes if and only if **x** is the fixed point of the morphism $\varphi_{\Delta^{j}(w)}$ for some $j \ge 1$.

Results

Remarks Open question o

Morphisms with two fixed points

Given a finite word u, we define the **cyclic shift** of $u = u_0 u_1 \cdots u_{n-1}$ to be the word

$$\operatorname{cyc}(u) = u_1 u_2 \cdots u_{n-1} u_0.$$

Results

Remarks Open question

Morphisms with two fixed points

Given a finite word u, we define the **cyclic shift** of $u = u_0 u_1 \cdots u_{n-1}$ to be the word

$$\operatorname{cyc}(u) = u_1 u_2 \cdots u_{n-1} u_0.$$

Theorem

Let $\psi = \varphi_w$ be a primitive morphism with $w \in \{a, \alpha\}^*$ and a be the first letter of w.

- (0) Let u be the fixed point of ψ starting with 0. Denote
 v = b⁻¹N(wb) ∈ {a, β}*. We have Der(u) = {v} ∪ Der(v),
 where v is the unique fixed point of the morphism φ_v.
- Let u be the fixed point of ψ starting with 1. Put v = cyc(w). We have Der(u) = Der(v), where v is the fixed point of the morphism φ_v starting with 1.

Results

Remarks Open question

Morphisms with two fixed points

Given a finite word u, we define the **cyclic shift** of $u = u_0 u_1 \cdots u_{n-1}$ to be the word

$$\operatorname{cyc}(u) = u_1 u_2 \cdots u_{n-1} u_0.$$

Theorem

Let $\psi = \varphi_w$ be a primitive morphism with $w \in \{a, \alpha\}^*$ and a be the first letter of w.

- (0) Let u be the fixed point of ψ starting with 0. Denote
 v = b⁻¹N(wb) ∈ {a, β}*. We have Der(u) = {v} ∪ Der(v),
 where v is the unique fixed point of the morphism φ_v.
- Let u be the fixed point of ψ starting with 1. Put v = cyc(w). We have Der(u) = Der(v), where v is the fixed point of the morphism φ_v starting with 1.

If *b* is the first letter: $a \leftrightarrow b$, $\alpha \leftrightarrow \beta$ and $0 \leftrightarrow 1$.

Moreover, in the case $w \in \{a, \alpha\}^*$ we know that the Sturmian words in $Der(\mathbf{u})$ (fixed by an element of $\langle a, \beta \rangle$ or $\langle \alpha, b \rangle$) have intercept 0 [M. **Dekking, 2017**]

Bounds on the number of derivated words

If $w \in \{a, b, \alpha, \beta\}^* \setminus \{a, \alpha\}^*$ is the normalized name of a primitive morphism $\psi = \varphi_w$ and **u** is a fixed point of ψ , then

$$1 \le \# \operatorname{Der}(\mathbf{u}) \le 3|w| - 4.$$
⁽²⁾

Bounds on the number of derivated words

If $w \in \{a, b, \alpha, \beta\}^* \setminus \{a, \alpha\}^*$ is the normalized name of a primitive morphism $\psi = \varphi_w$ and **u** is a fixed point of ψ , then

$$1 \le \# Der(\mathbf{u}) \le 3|w| - 4.$$
 (2)

For
$$n \ge 2$$
 set $w' = \beta^{n-2} a \alpha$ and $w'' = \alpha^{n-1} \beta$. We have

(i) $\varphi_{w'}$ and $\varphi_{w''}$ are not powers of other Sturmian morphisms,

(ii) for the fixed points \mathbf{u}' and \mathbf{u}'' of the morphisms $\varphi_{\mathbf{w}'}$ and $\varphi_{\mathbf{w}''}$, the lower resp. the upper bound in (2) is attained.

Results

Remarks Open question o

Exact counts - mappings ${\pmb F}$ and ${\pmb E}$

 $\mathit{F}: \{\mathit{a}, \mathit{b}, \alpha, \beta\}^* \mapsto \{\mathit{a}, \mathit{b}, \alpha, \beta\}^*$ determined by

$${oldsymbol F}({oldsymbol a})=lpha, \quad {oldsymbol F}({oldsymbol b})=eta, \quad {oldsymbol F}(eta)={oldsymbol b},$$

and we set

$$\operatorname{cyc}_{\mathrm{F}}(w_1w_2w_3\cdots w_n) = w_2w_3\cdots w_nF(w_1)$$

for a finite word $w_1 w_2 w_3 \cdots w_n$.

E is the morphism over $\{0, 1\}^*$ determined by

$$E(0) = 1$$
 and $E(1) = 0$.

Results

Exact counts - standard Sturmian morphisms

Let **u** be a fixed point of a standard Sturmian morphism ψ which is not a power of any other Sturmian morphism ($\psi \in \langle b, \beta \rangle \cup \langle b, \beta \rangle \circ E$).

(i) If ψ = φ_w (i.e., ψ ∈ ⟨φ_b, φ_β⟩), then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$\varphi_{\mathbf{v}_0}, \varphi_{\mathbf{v}_1}, \varphi_{\mathbf{v}_2}, \ldots, \varphi_{\mathbf{v}_{|\mathbf{w}|-1}},$$

where $v_k = \text{cyc}^k(w)$ for k = 0, 1, ..., |w| - 1.

(ii) If ψ = φ_w ∘ E (i.e., ψ ∈ ⟨φ_b, φ_β⟩ ∘ E), then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$\varphi_{\mathbf{v}_0} \circ \mathbf{E}, \varphi_{\mathbf{v}_1} \circ \mathbf{E}, \varphi_{\mathbf{v}_2} \circ \mathbf{E}, \dots, \varphi_{\mathbf{v}_{|\mathbf{w}|-1}} \circ \mathbf{E},$$

where $v_k = \text{cyc}_F^k(w)$ for k = 0, 1, ..., |w| - 1.

Results

Exact counts - standard Sturmian morphisms

Let **u** be a fixed point of a standard Sturmian morphism ψ which is not a power of any other Sturmian morphism ($\psi \in \langle b, \beta \rangle \cup \langle b, \beta \rangle \circ E$).

(i) If ψ = φ_w (i.e., ψ ∈ ⟨φ_b, φ_β⟩), then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$\varphi_{v_0}, \varphi_{v_1}, \varphi_{v_2}, \ldots, \varphi_{v_{|w|-1}},$$

where $v_k = \text{cyc}^k(w)$ for k = 0, 1, ..., |w| - 1.

(ii) If ψ = φ_w ∘ E (i.e., ψ ∈ ⟨φ_b, φ_β⟩ ∘ E), then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$\varphi_{\mathbf{v}_0} \circ \mathbf{E}, \varphi_{\mathbf{v}_1} \circ \mathbf{E}, \varphi_{\mathbf{v}_2} \circ \mathbf{E}, \dots, \varphi_{\mathbf{v}_{|\mathbf{w}|-1}} \circ \mathbf{E},$$

where $v_k = \text{cyc}_F^k(w)$ for k = 0, 1, ..., |w| - 1.

Can be inferred from [I. M. Araújo, V. Bruyère, 2005] .

Exact counts - $\Psi \in \langle \varphi_a, \varphi_\alpha \rangle$

Let $w \in \{\alpha, a\}^*$ be the normalized name of a primitive morphism ψ such that the letter *a* is a prefix of *w*. Moreover, assume that ψ is not a power of any other Sturmian morphism.

- (i) The fixed point of ψ starting with 0 has exactly $1 + |w|_{\alpha}$ distinct derivated words.
- (ii) The fixed point of ψ starting with 1 has exactly $1 + |w|_a$ distinct derivated words.

If *b* is the first letter: $a \leftrightarrow b$, $\alpha \leftrightarrow \beta$ and $0 \leftrightarrow 1$.

Open questions

We looked at derivated words only with respect to a prefix. For standard/characteristic Sturmian words it is easy to extend the results to any factor.

Q1: Non-standard words?

Exact counts for other Sturmian morphisms:

Q2: a description when a normalized name is corresponds to a power of a morphism is needed.

Q3: Generalizations - see [V. Berthé, F. Dolce, F. Durand, J. Leroy,
 D. Perrin, *Rigidity and substitutive dendric words*]
 Extension to other *S*-adic sequences requires presentation of the morphism monoid.

Thank you