Fixed points of Sturmian morphisms and their derivated words

Karel Klouda, Kateřina Medková, Edita Pelantová, Štěpán Starosta

Czech Technical University in Prague

17e Journées montoises d'informatique théorique LaBRI, Bordeaux, September 10-14, 2018

Motivation I

take the Fibonacci word
$\mathbf{u}=0100101001001010010100100101001001 \ldots$

Motivation I

take the Fibonacci word
$\mathbf{u}=0100101001001010010100100101001001 \ldots$
its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$

Motivation I

take the Fibonacci word
$\mathbf{u}=0100101001001010010100100101001001 \ldots$
its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$

Motivation I

take the Fibonacci word
$\mathbf{u}=0100101001001010010100100101001001 \ldots$
its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$
thus
$\mathbf{u}=r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} \ldots$

Motivation I

take the Fibonacci word

$\mathbf{u}=0100101001001010010100100101001001 \ldots$

its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$
thus
$\mathbf{u}=r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} \ldots$
we rename $r_{i} \mapsto i$
$010010100100101001010 \ldots$ (derivated word of \mathbf{u} with respect to
0 [F. Durand, 1998])

Motivation I

take the Fibonacci word

$\mathbf{u}=0100101001001010010100100101001001 \ldots$

its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$
thus
$\mathbf{u}=r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} \ldots$
we rename $r_{i} \mapsto i$
$\mathbf{u}=010010100100101001010 \ldots$ (derivated word of \mathbf{u} with respect to
0 [F. Durand, 1998])
and obtain the Fibonacci word \mathbf{u}

Motivation I

take the Fibonacci word

$\mathbf{u}=0100101001001010010100100101001001 \ldots$

its prefix 0 has exactly 2 return words $r_{0}=01$ and $r_{1}=0$
thus
$\mathbf{u}=r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} r_{0} r_{1} r_{0} r_{1} r_{0} \ldots$
we rename $r_{i} \mapsto i$
$\mathbf{u}=010010100100101001010 \ldots$ (derivated word of \mathbf{u} with respect to
0 [F. Durand, 1998])
and obtain the Fibonacci word \mathbf{u}
if we take any prefix, we obtain again the Fibonacci word

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]
any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]
any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

again by [F. Durand, 1998]
if \mathbf{u} is a fixed point of a primitive morphism, then the set of all its derivated words is finite

Motivation II

> By [F. Durand, 1998] and [L. Vuillon, 2001]
> any derivated word of a Sturmian word (with respect to some its prefix) is a Sturmian word

again by [F. Durand, 1998]
if \mathbf{u} is a fixed point of a primitive morphism, then the set of all its derivated words is finite
and yet again by [F. Durand, 1998]
all such derivated words are fixed by a primitive morphism

Known results and our questions

[I. M. Araújo, V. Bruyère, 2005] : slopes of derivated words of standard/characteristic/homogeneous Sturmian words

Known results and our questions

[I. M. Araújo, V. Bruyère, 2005] : slopes of derivated words of standard/characteristic/homogeneous Sturmian words

Our question:
what are the morphisms fixing the derivated words and what is their number?

Notation

when considering derivated words, we consider them up to a permutation of letters

Notation

when considering derivated words, we consider them up to a permutation of letters
$\operatorname{Der}(\mathbf{u})=\{$ derivated word of \mathbf{u} with respect to $w: w$ is a prefix of $\mathbf{u}\}$

Sturmian monoid

We work with these four elementary Sturmian morphisms:

$$
\varphi_{a}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 10
\end{array} \varphi_{b}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 01
\end{array} \varphi_{\alpha}:\left\{\begin{array}{l}
0 \rightarrow 01 \\
1 \rightarrow 1
\end{array} \varphi_{\beta}:\left\{\begin{array}{l}
0 \rightarrow 10 \\
1 \rightarrow 1
\end{array}\right.\right.\right.\right.
$$

Sturmian monoid

We work with these four elementary Sturmian morphisms:
$\varphi_{a}:\left\{\begin{array}{l}0 \rightarrow 0 \\ 1 \rightarrow 10\end{array} \varphi_{b}:\left\{\begin{array}{l}0 \rightarrow 0 \\ 1 \rightarrow 01\end{array} \varphi_{\alpha}:\left\{\begin{array}{l}0 \rightarrow 01 \\ 1 \rightarrow 1\end{array} \varphi_{\beta}:\left\{\begin{array}{l}0 \rightarrow 10 \\ 1 \rightarrow 1\end{array}\right.\right.\right.\right.$

Set $\mathcal{M}=\left\langle\varphi_{a}, \varphi_{b}, \varphi_{\alpha}, \varphi_{\beta}\right\rangle$.
Notation: $\varphi_{w}=\varphi_{w_{0}} \varphi_{w_{1}} \cdots \varphi_{w_{|w|-1}}$, e.g., $\varphi_{\mathrm{a} \alpha b}=\varphi_{a} \varphi_{\alpha} \varphi_{b}$

Sturmian monoid

We work with these four elementary Sturmian morphisms:
$\varphi_{a}:\left\{\begin{array}{l}0 \rightarrow 0 \\ 1 \rightarrow 10\end{array} \varphi_{b}:\left\{\begin{array}{l}0 \rightarrow 0 \\ 1 \rightarrow 01\end{array} \varphi_{\alpha}:\left\{\begin{array}{l}0 \rightarrow 01 \\ 1 \rightarrow 1\end{array} \varphi_{\beta}:\left\{\begin{array}{l}0 \rightarrow 10 \\ 1 \rightarrow 1\end{array}\right.\right.\right.\right.$

Set $\mathcal{M}=\left\langle\varphi_{a}, \varphi_{b}, \varphi_{\alpha}, \varphi_{\beta}\right\rangle$.
Notation: $\varphi_{w}=\varphi_{w_{0}} \varphi_{w_{1}} \cdots \varphi_{w_{|w|-1}}$, e.g., $\varphi_{\text {a } \alpha b}=\varphi_{a} \varphi_{\alpha} \varphi_{b}$
The monoid \mathcal{M} has presentation

$$
\varphi_{\alpha a^{k} \beta}=\varphi_{\beta b^{k} \alpha} \quad \text { and } \quad \varphi_{a \alpha^{k} b}=\varphi_{b \beta^{k} a} .
$$

[P. Séébold, 1991] [C. Kassel, C. Reutenauer, 2007]

Normalized names

$$
\begin{equation*}
\alpha a^{k} \beta=\beta b^{k} \alpha \quad \text { and } \quad a \alpha^{k} b=b \beta^{k} a \tag{1}
\end{equation*}
$$

Normalized names

$$
\begin{equation*}
\alpha a^{k} \beta=\beta b^{k} \alpha \quad \text { and } \quad a \alpha^{k} b=b \beta^{k} a \tag{1}
\end{equation*}
$$

Set $a<b, \alpha<\beta$

Let $w \in\{a, b, \alpha, \beta\}^{*}$. The normalized name $N(w)$ of φ_{w} is the lexicographically greatest word equal to w using (1)

Normalized names

$$
\begin{equation*}
\alpha a^{k} \beta=\beta b^{k} \alpha \quad \text { and } \quad a \alpha^{k} b=b \beta^{k} a \tag{1}
\end{equation*}
$$

Set $a<b, \alpha<\beta$

Let $w \in\{a, b, \alpha, \beta\}^{*}$. The normalized name $N(w)$ of φ_{w} is the lexicographically greatest word equal to w using (1)

The mapping Δ

Let $w \in\{a, b, \alpha, \beta\}^{*} \backslash\{a, \alpha\}^{*}$ be the normalized name of a morphism ψ, i.e., $\psi=\varphi_{w}$. We set

$$
\Delta(w)= \begin{cases}N\left(w^{\prime} a^{k} \beta\right) & \text { if } w=a^{k} \beta w^{\prime} \\ N\left(w^{\prime} \alpha^{k} b\right) & \text { if } w=\alpha^{k} b w^{\prime}\end{cases}
$$

Example

Consider the morphism $\psi=\varphi_{w}$, where $w=N(w)=\beta \alpha a a \alpha$, and apply repeatedly the transformation Δ on w.

$$
\begin{aligned}
w & =\beta \alpha a a \alpha \\
\Delta(w) & =\alpha a a \alpha \beta \\
\Delta^{2}(w) & =b b \alpha \alpha \beta \\
\Delta^{3}(w) & =b \beta \alpha \alpha b \\
\Delta^{4}(w) & =\beta \alpha \alpha b b \\
\Delta^{5}(w) & =\alpha \alpha b b \beta \\
\Delta^{6}(w) & =\Delta^{3}(w)
\end{aligned}
$$

Example

Consider the morphism $\psi=\varphi_{w}$, where $w=N(w)=\beta \alpha a a \alpha$, and apply repeatedly the transformation Δ on w.

$$
\begin{aligned}
w & =\beta \alpha a a \alpha \\
\Delta(w) & =\alpha a a \alpha \beta \\
\Delta^{2}(w) & =b b \alpha \alpha \beta \\
\Delta^{3}(w) & =b \beta \alpha \alpha b \\
\Delta^{4}(w) & =\beta \alpha \alpha b b \\
\Delta^{5}(w) & =\alpha \alpha b b \beta \\
\Delta^{6}(w) & =\Delta^{3}(w)
\end{aligned}
$$

The 5 fixed points of the morphisms $\varphi_{\Delta(w)}, \varphi_{\Delta^{2}(w)}, \varphi_{\Delta^{3}(w)}, \varphi_{\Delta^{4}(w)}, \varphi_{\Delta^{5}(w)}$ are exactly the five derivated words of the fixed point of ψ.

Morphisms with unique fixed points

Theorem

Let $\psi \in\left\langle\varphi_{a}, \varphi_{b}, \varphi_{\alpha}, \varphi_{\beta}\right\rangle \backslash\left\langle\varphi_{a}, \varphi_{\alpha}\right\rangle$ be a primitive morphism w be its normalized name.

Denote \mathbf{u} the fixed point of ψ.

The word \mathbf{x} is (up to a permutation of letters) a derivated word of \mathbf{u} with respect to one of its prefixes if and only if \mathbf{x} is the fixed point of the morphism $\varphi_{\Delta^{j}(w)}$ for some $j \geq 1$.

Morphisms with two fixed points

Given a finite word u, we define the cyclic shift of $u=u_{0} u_{1} \cdots u_{n-1}$ to be the word

$$
\operatorname{cyc}(u)=u_{1} u_{2} \cdots u_{n-1} u_{0}
$$

Morphisms with two fixed points

Given a finite word u, we define the cyclic shift of $u=u_{0} u_{1} \cdots u_{n-1}$ to be the word

$$
\operatorname{cyc}(u)=u_{1} u_{2} \cdots u_{n-1} u_{0}
$$

Theorem

Let $\psi=\varphi_{w}$ be a primitive morphism with $w \in\{a, \alpha\}^{*}$ and a be the first letter of w.
(0) Let \mathbf{u} be the fixed point of ψ starting with 0 . Denote $v=b^{-1} N(w b) \in\{a, \beta\}^{*}$. We have $\operatorname{Der}(\mathbf{u})=\{\mathbf{v}\} \cup \operatorname{Der}(\mathbf{v})$, where \mathbf{v} is the unique fixed point of the morphism φ_{v}.
(1) Let \mathbf{u} be the fixed point of ψ starting with 1 . Put $v=\operatorname{cyc}(w)$. We have $\operatorname{Der}(\mathbf{u})=\operatorname{Der}(\mathbf{v})$, where \mathbf{v} is the fixed point of the morphism φ_{v} starting with 1.

Morphisms with two fixed points

Given a finite word u, we define the cyclic shift of $u=u_{0} u_{1} \cdots u_{n-1}$ to be the word

$$
\operatorname{cyc}(u)=u_{1} u_{2} \cdots u_{n-1} u_{0}
$$

Theorem

Let $\psi=\varphi_{w}$ be a primitive morphism with $w \in\{a, \alpha\}^{*}$ and a be the first letter of w.
(0) Let \mathbf{u} be the fixed point of ψ starting with 0 . Denote $v=b^{-1} N(w b) \in\{a, \beta\}^{*}$. We have $\operatorname{Der}(\mathbf{u})=\{\mathbf{v}\} \cup \operatorname{Der}(\mathbf{v})$, where \mathbf{v} is the unique fixed point of the morphism φ_{v}.
(1) Let \mathbf{u} be the fixed point of ψ starting with 1 . Put $v=\operatorname{cyc}(w)$. We have $\operatorname{Der}(\mathbf{u})=\operatorname{Der}(\mathbf{v})$, where \mathbf{v} is the fixed point of the morphism φ_{v} starting with 1.

If b is the first letter: $a \leftrightarrow b, \alpha \leftrightarrow \beta$ and $0 \leftrightarrow 1$.

Moreover, in the case $w \in\{a, \alpha\}^{*}$ we know that the Sturmian words in $\operatorname{Der}(\mathbf{u})$ (fixed by an element of $\langle a, \beta\rangle$ or $\langle\alpha, b\rangle$) have intercept 0 [M. Dekking, 2017]

Bounds on the number of derivated words

If $w \in\{a, b, \alpha, \beta\}^{*} \backslash\{a, \alpha\}^{*}$ is the normalized name of a primitive morphism $\psi=\varphi_{w}$ and \mathbf{u} is a fixed point of ψ, then

$$
\begin{equation*}
1 \leq \# \operatorname{Der}(\mathbf{u}) \leq 3|w|-4 \tag{2}
\end{equation*}
$$

Bounds on the number of derivated words

If $w \in\{a, b, \alpha, \beta\}^{*} \backslash\{a, \alpha\}^{*}$ is the normalized name of a primitive morphism $\psi=\varphi_{w}$ and \mathbf{u} is a fixed point of ψ, then

$$
\begin{equation*}
1 \leq \# \operatorname{Der}(\mathbf{u}) \leq 3|w|-4 \tag{2}
\end{equation*}
$$

For $n \geq 2$ set $w^{\prime}=\beta^{n-2} a \alpha$ and $w^{\prime \prime}=\alpha^{n-1} \beta$. We have
(i) $\varphi_{w^{\prime}}$ and $\varphi_{w^{\prime \prime}}$ are not powers of other Sturmian morphisms,
(ii) for the fixed points \mathbf{u}^{\prime} and $\mathbf{u}^{\prime \prime}$ of the morphisms $\varphi_{w^{\prime}}$ and $\varphi_{w^{\prime \prime}}$, the lower resp. the upper bound in (2) is attained.

Exact counts - mappings F and E

$F:\{a, b, \alpha, \beta\}^{*} \mapsto\{a, b, \alpha, \beta\}^{*}$ determined by

$$
F(a)=\alpha, \quad F(\alpha)=a, \quad F(b)=\beta, \quad F(\beta)=b,
$$

and we set

$$
\operatorname{cyc}_{F}\left(w_{1} w_{2} w_{3} \cdots w_{n}\right)=w_{2} w_{3} \cdots w_{n} F\left(w_{1}\right)
$$

for a finite word $w_{1} w_{2} w_{3} \cdots w_{n}$.
E is the morphism over $\{0,1\}^{*}$ determined by

$$
E(0)=1 \quad \text { and } \quad E(1)=0 .
$$

Exact counts - standard Sturmian morphisms

Let u be a fixed point of a standard Sturmian morphism ψ which is not a power of any other Sturmian morphism $(\psi \in\langle b, \beta\rangle \cup\langle b, \beta\rangle \circ E)$.
(i) If $\psi=\varphi_{w}$ (i.e., $\psi \in\left\langle\varphi_{b}, \varphi_{\beta}\right\rangle$), then \mathbf{u} has $|w|$ distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$
\varphi_{v_{0}}, \varphi_{v_{1}}, \varphi_{v_{2}}, \ldots, \varphi_{v_{|w|-1}}
$$

where $v_{k}=\operatorname{cyc}^{k}(w)$ for $k=0,1, \ldots,|w|-1$.
(ii) If $\psi=\varphi_{w} \circ E$ (i.e., $\psi \in\left\langle\varphi_{b}, \varphi_{\beta}\right\rangle \circ E$), then \mathbf{u} has $|w|$ distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$
\varphi_{v_{0}} \circ E, \varphi_{v_{1}} \circ E, \varphi_{v_{2}} \circ E, \ldots, \varphi_{v_{|| |-1}} \circ E
$$

where $v_{k}=\operatorname{cyc}_{F}^{k}(w)$ for $k=0,1, \ldots,|w|-1$.

Exact counts - standard Sturmian morphisms

Let u be a fixed point of a standard Sturmian morphism ψ which is not a power of any other Sturmian morphism $(\psi \in\langle b, \beta\rangle \cup\langle b, \beta\rangle \circ E)$.
(i) If $\psi=\varphi_{w}$ (i.e., $\psi \in\left\langle\varphi_{b}, \varphi_{\beta}\right\rangle$), then \mathbf{u} has $|w|$ distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$
\varphi_{v_{0}}, \varphi_{v_{1}}, \varphi_{v_{2}}, \ldots, \varphi_{v_{|w|-1}}
$$

where $v_{k}=\operatorname{cyc}^{k}(w)$ for $k=0,1, \ldots,|w|-1$.
(ii) If $\psi=\varphi_{w} \circ E$ (i.e., $\psi \in\left\langle\varphi_{b}, \varphi_{\beta}\right\rangle \circ E$), then \mathbf{u} has $|w|$ distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

$$
\varphi_{v_{0}} \circ E, \varphi_{v_{1}} \circ E, \varphi_{v_{2}} \circ E, \ldots, \varphi_{v_{|| |-1}} \circ E
$$

where $v_{k}=\operatorname{cyc}_{F}^{k}(w)$ for $k=0,1, \ldots,|w|-1$.
Can be inferred from [I. M. Araújo, V. Bruyère, 2005] .

Exact counts $-\Psi \in\left\langle\varphi_{\mathrm{a}}, \varphi_{\alpha}\right\rangle$

Let $w \in\{\alpha, a\}^{*}$ be the normalized name of a primitive morphism ψ such that the letter a is a prefix of w. Moreover, assume that ψ is not a power of any other Sturmian morphism.
(i) The fixed point of ψ starting with 0 has exactly $1+|w|_{\alpha}$ distinct derivated words.
(ii) The fixed point of ψ starting with 1 has exactly $1+|w|_{a}$ distinct derivated words.

If b is the first letter: $a \leftrightarrow b, \alpha \leftrightarrow \beta$ and $0 \leftrightarrow 1$.

Open questions

We looked at derivated words only with respect to a prefix. For standard/characteristic Sturmian words it is easy to extend the results to any factor.

Q1: Non-standard words?

Exact counts for other Sturmian morphisms:
Q2: a description when a normalized name is corresponds to a power of a morphism is needed.

Q3: Generalizations - see [V. Berthé, F. Dolce, F. Durand, J. Leroy,
D. Perrin, Rigidity and substitutive dendric words]

Extension to other S-adic sequences requires presentation of the morphism monoid.

Thank you

