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Introduction Results Remarks Open question

Motivation I

take the Fibonacci word
u = 0100101001001010010100100101001001 . . .

its prefix 0 has exactly 2 return words r0 = 01 and r1 = 0

thus
u = r0r1r0r0r1r0r1r0r0r1r0r0r1r0r1r0r0r1r0r1r0 . . .

we rename ri 7→ i

u =

010010100100101001010 . . . (derivated word of u with respect to
0 [F. Durand, 1998] )

and obtain the Fibonacci word u

if we take any prefix, we obtain again the Fibonacci word
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Introduction Results Remarks Open question

Motivation II

By [F. Durand, 1998] and [L. Vuillon, 2001]
any derivated word of a Sturmian word (with respect to some its prefix)
is a Sturmian word

again by [F. Durand, 1998]
if u is a fixed point of a primitive morphism, then the set of all its
derivated words is finite

and yet again by [F. Durand, 1998]
all such derivated words are fixed by a primitive morphism
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Introduction Results Remarks Open question

Known results and our questions

[I. M. Araújo, V. Bruyère, 2005] : slopes of derivated words of
standard/characteristic/homogeneous Sturmian words

Our question:
what are the morphisms fixing the derivated words and what is their
number?
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Introduction Results Remarks Open question

Notation

when considering derivated words, we consider them up to a
permutation of letters

Der(u) = { derivated word of u with respect to w : w is a prefix of u}
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Introduction Results Remarks Open question

Sturmian monoid

We work with these four elementary Sturmian morphisms:

ϕa :

{
0→ 0

1→ 10
ϕb :

{
0→ 0

1→ 01
ϕα :

{
0→ 01

1→ 1
ϕβ :

{
0→ 10

1→ 1

SetM = 〈ϕa, ϕb, ϕα, ϕβ〉.

Notation: ϕw = ϕw0ϕw1 · · ·ϕw|w|−1
, e.g., ϕaαb = ϕaϕαϕb

The monoidM has presentation

ϕαakβ = ϕβbkα and ϕaαk b = ϕbβk a.

[P. Séébold, 1991] [C. Kassel, C. Reutenauer, 2007]
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Introduction Results Remarks Open question

Normalized names

αakβ = βbkα and aαk b = bβk a (1)

Set a < b, α < β

Let w ∈ {a, b, α, β}∗. The normalized name N(w) of ϕw is the
lexicographically greatest word equal to w using (1)
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Introduction Results Remarks Open question

The mapping ∆

Let w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of a
morphism ψ, i.e., ψ = ϕw . We set

∆(w) =

{
N(w ′akβ) if w = akβw ′,

N(w ′αk b) if w = αk bw ′.

8 / 17



Introduction Results Remarks Open question

Example

Consider the morphism ψ = ϕw , where w = N(w) = βαaaα, and
apply repeatedly the transformation ∆ on w .

w = βαaaα

∆(w) = αaaαβ

∆2(w) = bbααβ

∆3(w) = bβααb

∆4(w) = βααbb

∆5(w) = ααbbβ

∆6(w) = ∆3(w)

The 5 fixed points of the morphisms
ϕ∆(w), ϕ∆2(w), ϕ∆3(w), ϕ∆4(w), ϕ∆5(w) are exactly the five derivated
words of the fixed point of ψ.
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Introduction Results Remarks Open question

Morphisms with unique fixed points

Theorem

Let ψ ∈ 〈ϕa, ϕb, ϕα, ϕβ〉 \ 〈ϕa, ϕα〉 be a primitive morphism w be its
normalized name.

Denote u the fixed point of ψ.

The word x is (up to a permutation of letters) a derivated word of u
with respect to one of its prefixes if and only if x is the fixed point of the
morphism ϕ∆j (w) for some j ≥ 1.
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Introduction Results Remarks Open question

Morphisms with two fixed points

Given a finite word u, we define the cyclic shift of u = u0u1 · · · un−1

to be the word
cyc(u) = u1u2 · · · un−1u0.

Theorem

Let ψ = ϕw be a primitive morphism with w ∈ {a, α}∗ and a be the
first letter of w.

(0) Let u be the fixed point of ψ starting with 0. Denote
v = b−1N(wb) ∈ {a, β}∗. We have Der(u) = {v} ∪Der(v),
where v is the unique fixed point of the morphism ϕv .

(1) Let u be the fixed point of ψ starting with 1. Put v = cyc(w). We
have Der(u) = Der(v), where v is the fixed point of the morphism
ϕv starting with 1.

If b is the first letter: a↔ b, α↔ β and 0↔ 1.
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Introduction Results Remarks Open question

Moreover, in the case w ∈ {a, α}∗ we know that the Sturmian words
in Der(u) (fixed by an element of 〈a, β〉 or 〈α, b〉) have intercept 0 [M.
Dekking, 2017]
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Introduction Results Remarks Open question

Bounds on the number of derivated words

If w ∈ {a, b, α, β}∗ \ {a, α}∗ is the normalized name of a primitive
morphism ψ = ϕw and u is a fixed point of ψ, then

1 ≤ #Der(u) ≤ 3|w | − 4 . (2)

For n ≥ 2 set w ′ = βn−2aα and w ′′ = αn−1β. We have

(i) ϕw ′ and ϕw ′′ are not powers of other Sturmian morphisms,

(ii) for the fixed points u′ and u′′ of the morphisms ϕw ′ and ϕw ′′ , the
lower resp. the upper bound in (2) is attained.
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Introduction Results Remarks Open question

Exact counts - mappings F and E

F : {a, b, α, β}∗ 7→ {a, b, α, β}∗ determined by

F(a) = α, F(α) = a, F(b) = β, F(β) = b,

and we set

cycF(w1w2w3 · · ·wn) = w2w3 · · ·wnF(w1)

for a finite word w1w2w3 · · ·wn.

E is the morphism over {0, 1}∗ determined by

E(0) = 1 and E(1) = 0.
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Exact counts - standard Sturmian morphisms

Let u be a fixed point of a standard Sturmian morphism ψ which is not
a power of any other Sturmian morphism (ψ ∈ 〈b, β〉 ∪ 〈b, β〉 ◦ E).

(i) If ψ = ϕw (i.e., ψ ∈ 〈ϕb, ϕβ〉), then u has |w | distinct derivated
words, each of them (up to a permutation of letters) is fixed by
one of the morphisms

ϕv0 , ϕv1 , ϕv2 , . . . , ϕv|w|−1
,

where vk = cyck (w) for k = 0, 1, . . . , |w | − 1.

(ii) If ψ = ϕw ◦ E (i.e., ψ ∈ 〈ϕb, ϕβ〉 ◦ E), then u has |w | distinct
derivated words, each of them (up to a permutation of letters) is
fixed by one of the morphisms

ϕv0 ◦ E , ϕv1 ◦ E , ϕv2 ◦ E , . . . , ϕv|w|−1
◦ E ,

where vk = cyck
F (w) for k = 0, 1, . . . , |w | − 1.

Can be inferred from [I. M. Araújo, V. Bruyère, 2005] .
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Exact counts - Ψ ∈ 〈ϕa, ϕα〉

Let w ∈ {α, a}∗ be the normalized name of a primitive morphism ψ
such that the letter a is a prefix of w . Moreover, assume that ψ is not a
power of any other Sturmian morphism.

(i) The fixed point of ψ starting with 0 has exactly 1 + |w |α distinct
derivated words.

(ii) The fixed point of ψ starting with 1 has exactly 1 + |w |a distinct
derivated words.

If b is the first letter: a↔ b, α↔ β and 0↔ 1.
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Open questions

We looked at derivated words only with respect to a prefix. For
standard/characteristic Sturmian words it is easy to extend the results
to any factor.

Q1: Non-standard words?

Exact counts for other Sturmian morphisms:
Q2: a description when a normalized name is corresponds to a power
of a morphism is needed.

Q3: Generalizations - see [V. Berthé, F. Dolce, F. Durand, J. Leroy,
D. Perrin, Rigidity and substitutive dendric words]
Extension to other S-adic sequences requires presentation of the
morphism monoid.
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