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BACKGROUND & MOTIVATIONS

» Well-Structured Systems (WSTS) are a family of infinite-state
models where safety, inevitability, etc., properties are decidable

» There, decidability relies on the fact that states are
well-quasi-ordered and uses generic algorithms.

» WSTS invented by Finkel (1987), developed and popularized by
Abdulla & Jonsson, Finkel & Schnoebelen, etc. (1996-2005).

» First used with counters, queues, gap-order constraints, etc.

» The family encompasses many kinds of models: distributed
systems, counter systems, out-of-order memory, communication
protocols, automata for logic, ... (still growing).

» In 2017, WSTS recognized as a fundamental contribution by the
Computer-Aided Verification community.



OUTLINE OF THE TALK

Part 0: Basics of WQOs.

v

» Part 1: Basics of WSTS.
» Part 2: Verifying WSTS.

» Part 3: Assessing Complexity.
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Quasi-orderings are more robust. If (X, <) is an ordering, (P(X),Z) is
in general not antisymmetric
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We consider quasi-orderings, like e.g.
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<x Is the subsequence/subword ordering. It extends <pef
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WELL-QUASI ORDERINGS (WQO)
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OTHER WQO FACTS
Many characterizations: (X, <) is wqo iff
» itis WF and FAC;

» every infinite sequence xg,x1,%>,... is good, i.e. contains an
increasing pair x; < x; (for some i <j);

» every infinite sequence xg,x1,%>,... is perfect, i.e. contains an
infinite increasing subsequence x;, < xi, < xi, <--- (with
o<ii<ir<---);

» every linearization (X,<’) of < is a wellorder.

Many ways to construct WQOs:
» Cartesian products, powersets, ..

» sequences, trees, graphs.



Part 1
Basics of WSTS



WELL-STRUCTURED SYSTEMS

In program verification, wqo’s appear prominently in well-structured
systems (WSTS).

Def. A WSTS is a system (S,—, <) where
1. (S,—) with -» < S x S is a transition system

2. the set of states (S, <) is wqo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s » t and s < s’ imply s’ — t’ for some t’ >t



SOME WSTS’s: MONOTONIC COUNTER MACHINES
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SOME WSTS’sS: MONOTONIC COUNTER MACHINES
a[0]
0 - =[]

c1>=8?
5 [1]

A run of M: (€o,0,1,4) — (£1,1,1,4) — (£5,1,0,4) — ({3,1,0,0)

Ordering states: (£1,0,0,0) < (¢1,0,1,2) but (¢1,0,0,0) £ (£2,0,1,2).
This is wgo as a product of wqo’s: (Loc,=) x (IN3,<x)
Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast
protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy
monotonicity
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SOME WSTS’S: INTEGRAL RELATIONAL AUTOMATA
c1<cy? cp:=??; cp:=c3 ‘1

= [0]
c1=8>cp=c3? o
Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “??”
One does not use <« to compare states!! Rather
((11, ceey ak)gsparse(bl, .. .,bk)

gVI,]—l k:(aigaj iffbigbj) A (\ai—aj\ < |bi—b]‘|).

Fact. (Zk, gsparSe) is wqo
Compatibility: We use

(E,al,...,ak)<(€/,b1,...,bk) dé:f (1)
(= 2, A (al,...,ak,—l,S) <sparse (bl,...,bk,—l,s) .



SOME WSTS’s: LossyY CHANNEL SYSTEMS (LCS)
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P

A state s = (el,EZ,Wl,Wz) with Wy € A*,
E.g., w1 = hup.ack.ack.

Reliable steps: s —¢ s’ read in front of channels, write at end (FIFO)
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channel ¢;
P - i ack ! ack : hup !
c1lack
channel ¢,
comsg -~ i msg istop!
P

A state s = (el,EZ,Wl,Wz) with Wy € A*,
E.g., w1 = hup.ack.ack.

Reliable steps: s —¢ s’ read in front of channels, write at end (FIFO)
Lossy steps: messages may be lost nondeterministically
def
$—>8 25>t ot/ =48 forsomet,t’ €S

where (S,C) is the wqo (Locy, =) x (Loca,=) x (AL, <x) x (AL, <)
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SOME WSTS’s: LossyY CHANNEL SYSTEMS (LCS)

channel ¢; colmsg >
P — {ack ! ack ! hup !} - -
cilack ¢17hup
channel ¢,
-, c{?msg - i msg istop! g
A b

A state s = (21,€2,W1,W2) with w; € A*,
E.g., w1 = hup.ack.ack.

Reliable steps: s —¢ s’ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
s—s' Es >4t >t/ =45’ forsomet,t’e$S
where (S,C) is the wqo (Locy, =) x (Loca,=) x (AL, <x) x (AL, <)

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...



SOME WSTS’s: BROADCAST PROTOCOLS

Broadcast protocols (Esparza, Finkel, Mayr 1999), aka population
protocols, are dynamic & distributed collections of finite-state
processes communicating via brodcasts (and rendez-vous, not

shown here).
@ QN a @ mil @

spawn

m?? /l

A configuration collects the local states of all processes. E.g.,
s = {c,r,c}, also denoted {c?,r}.



SOME WSTS’s: BROADCAST PROTOCOLS

Broadcast protocols (Esparza, Finkel, Mayr 1999), aka population
protocols, are dynamic & distributed collections of finite-state
processes communicating via brodcasts (and rendez-vous, not

shown here).
@ QN a @ mil @

spawn

m?? /J

A configuration collects the local states of all processes. E.g.,
s = {c,r,c}, also denoted {c?,r}.

Steps:

(2,1} 2P, 102 ¢ g1} S fat gt T (et LS {e g% L)
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PROVING TERMINATION

@ d! /c\ d»? @ ml! @

spawn

()

e This protocol has no infinite runs

Proof. Write s = {r™1,q™2,c"3,a*, L *}.
In any step s — s’ the triple (n1,n,,n3) decreases in the
lexicographic ordering

This is the pattern for proofs of termination: one invents a
well-founded measure that decreases with every step



BRODCAST PROTOCOLS ARE WSTS

1. Order the configurations by multiset inclusion, e.g.,
{c.q} = {c?r,q}
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1. Order the configurations by multiset inclusion, e.g.,
{c.q} = {c?1,q}

2. Observe that steps are monotonic:

s—>tascs’ = s’ >t atct

Proof. Case analysis: is s — t an internal move? or a spawning
step? or a broadcasting? or a rendez-vous?



BRODCAST PROTOCOLS ARE WSTS

1. Order the configurations by multiset inclusion, e.g.,
{c.q} = {c?1,q}

2. Observe that steps are monotonic:

so>tascs’ = s’ >t Attt

3. Further observe that (S,<) is wqo : it is isomoprhic to INILoc!
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DECIDING TERMINATION FOR WSTS

Lem. [Finite Witnesses for Infinite Runs]
A WSTS 8§ has an infinite run from s;,;; iff it has a finite run from s

that is a good sequence.

. def . .
Recall: sg,s1,52,...,5n IS good < there exist i <j s.t. s; <s;



DECIDING TERMINATION FOR WSTS

Lem. [Finite Witnesses for Infinite Runs]
A WSTS § has an infinite run from s;,;; iff it has a finite run from s,
that is a good sequence.

. def L. .
Recall: sg,s1,52,...,5n I8 good < there existi < j s.t. s; <'s;
Proof. =: by definition since < is wqo

«: good finite run sg = s; mR sj can be extended by simulating s; 5 S;
from above: s; 5 $2j—1i, then sp;_; 5 $3j—2i, etc.



DECIDING TERMINATION FOR WSTS

Lem. [Finite Witnesses for Infinite Runs]
A WSTS 8§ has an infinite run from s;,;; iff it has a finite run from s,
that is a good sequence.

. def s L. .
Recall: sg,s1,52,...,5n IS good < there exist i <j s.t. s; <s;

Corollary. One may decide Termination by enumerating all finite runs
from s;,it until a good sequence is encountered.
If all runs are bad, the enumeration will eventually exhaust them

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation
A similar algorithm allows deciding safety properties
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BROADCAST PROTOCOLS TAKE THEIR TIME

@ d! Q d?»? @ ml! @

N

m??/l

“Doubling” run: {c",q,(L*)} LA {a®™,q,(L*)} ™ {c®™, (L*)}

20 51
Building up: {c*’,q", 1} = {c?',q" 1,1} = (¢, q" 2,1}
n—1 an-l n d 0 n
e I A e N A CIRT L
Then: {c,q,r"} x {c,q2", v 1} ) {C’qtower(n)}
= Runs of terminating systems may have nonelementary lengths

= Running time of generic algorithm verifying termination is not
elementary for broadcast protocols
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gives Fy(x) ~ 2x, Fa(x) ~ 2%, F3(x) ~ tower(x) and
Fw(x) ~ ACKERMANN(x), the first F, that is not primitive recursive.



THE FAST-GROWING HIERARCHY

An ordinal-indexed family (F«)ycorg Of functions N — IN

x+1

def det c——
Fo(x) =x+1 Fatr1 (%) = Fa(Fa(...Fx(x)...))

Foo () € Frsn (x)
gives Fy(x) ~ 2x, Fa(x) ~ 2%, F3(x) ~ tower(x) and
Fw(x) ~ ACKERMANN(x), the first F, that is not primitive recursive.

Fa(x) def Fa, (x) for A a limit ordinal with a fundamental sequence

A <AL <Ap < <Al
x+1

Eg sz (X) = Fw_(XJrl) (X) = Fw~x+x+1 (X) = Fw~x+x (Fw~x+x(--Fw~x+x (X)))

def

Fx = all functions computable in time Fg(l) (very robust).
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COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over (N*, <y ):
—999,998,...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,
and the starting configuration is the input of our problem
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Here the control is the pair (ng,g) of np e N and g: IN — IN.

Fact. For a fixed wgo (A, <,|.|) and control (ng,g), there is max
length on controlled bad sequences (Kénig’s Lemma again)

Write Ly A (no) for this maximum length.



CONTROLLED BAD SEQUENCES

. def :
Def. A sequence xg,x1,... is controlled < |x;| < g*(ng) for all
i=0,1,...

Here the control is the pair (ng,g) of np e N and g: IN — IN.

Fact. For a fixed wgo (A, <,|.|) and control (ng,g), there is max
length on controlled bad sequences (Kénig’s Lemma again)

Write Ly A (no) for this maximum length.

Length Function Theorem for (N*, <) [McAloon,Schmitz & S.,...]
— Lgne(no) < gy, (no) with g polynomial in g
— gy and L i are in K1 for g in Fn
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= Time/space bound in % _; for broadcast protocols with k states,
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APPLYING TO BROADCAST PROTOCOLS

The runs explored by the Termination algorithm are controlled with
[sinit| @nd Succ: IN — IN.

= Time/space bound in % _; for broadcast protocols with k states,
and in %, when k is not fixed.

NB. Similar controls for the backward-chaining Coverability algorithm:
|Starget| and SuCC.

= ... same upper bounds - - -

This is a general situation:

— WSTS model (or WQO-based algorithm) provides A and g
— WQO-theory provides bounds for Ly o

= Complexity upper bounds for WQO-based algorithm
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MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, Ly« is in & x|-1, and in %,» when
alphabet is not fixed [Cichon,Schmitz& S.]. Applies e.g. to lossy
channel systems.

For sequences over N¥ with embedding, L(Nk)* isin vak, and in
Z ,»» When k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, Ly is in %,. Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wgos (powerset,
restricted families of graphs, ..) & analysis of complex algorithms
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WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
F»-hard, hence &, -complete, for broadcast protocols [Urquhart,..]

and &, «-complete for lossy channel systems [ChambartS’'08],
Z,ww-complete for timed-arc Petri nets [HaddadSS'12],
:,-complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.
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PROVING F,-HARDNESS

The four hardness results we just mentioned have all been proved
using the same techniques:

One shows how the WSTS model can weakly compute F, and its
inverse F;!. (Recall: broadcast protocol computing tower function)

Encode initial ordinals in (S, <) & implement Hardy computations in 8.
Hardy computations: («x+ 1,x) — (a,x+ 1) and (A, x) — (A, x).
Main technical issue: robustness

— One easily guarantee s < t = «(s) < «(t) but this does not
guarantee F ) (x) < Fy(y)(x) required for weak computation of F.

— We need s <t= «fs) = «(t), using an ad-hoc stronger relation
o = 3 that entails Fy (x) < Fg(x).



CONCLUDING REMARKS

» Executive Summary
Complexity analysis of WSTS models is possible

We have complexity classes, generic techniques for upper bounds,
catalog of %, -complete problems, see S. Schmitz. Complexity
hierarchies beyond Elementary. ACM Trans. Computation Theory,
8(1), 2016.

Many applications in verification and logic

« Perspectives
Need more length function theorems

There are many models for which complexity has not been narrowed

Would love to have alternative to Hardy computations ...



