
Simple algorithms

and fast-growing complexity

for well-structured systems

Philippe Schnoebelen

LSV; CNRS & ENS Paris-Saclay

Journées Montoises 2018

Based on joint work with Sylvain Schmitz, Pierre Chambart, Prateek

Karandikar, Simon Halfon, K. Narayan Kumar, Alain Finkel, ..

BACKGROUND & MOTIVATIONS

§ Well-Structured Systems (WSTS) are a family of infinite-state

models where safety, inevitability, etc., properties are decidable

§ There, decidability relies on the fact that states are

well-quasi-ordered and uses generic algorithms.

§ WSTS invented by Finkel (1987), developed and popularized by

Abdulla & Jonsson, Finkel & Schnoebelen, etc. (1996–2005).

§ First used with counters, queues, gap-order constraints, etc.

§ The family encompasses many kinds of models: distributed

systems, counter systems, out-of-order memory, communication

protocols, automata for logic, . . . (still growing).

§ In 2017, WSTS recognized as a fundamental contribution by the

Computer-Aided Verification community.

2/15

OUTLINE OF THE TALK

§ Part 0: Basics of WQOs.

§ Part 1: Basics of WSTS.

§ Part 2: Verifying WSTS.

§ Part 3: Assessing Complexity.

3/15

Part 0

Basics of WQOs

4/15

QUASI-ORDERINGS

We consider orderings, like e.g.

.

.

.

ăă ă

2

ăă ă

1

ăă ă

0

ăă ă

´1

ăă ă
.
.
.

pZ,ďq

5/15

QUASI-ORDERINGS

We consider quasi-orderings, like e.g.

0

8

4

2

1

3

6

12

5

´12

ăă ăăăă ăăă

ăă ă ăăă ăă ă

ăă ă ăăă ăă ă ăăă

¨ ¨ ¨¨¨
¨

”””pZ,ďdivq

Quasi-orderings are more robust. If pX,ďq is an ordering, pPpXq,Ďq is

in general not antisymmetric

5/15

QUASI-ORDERINGS

We consider quasi-orderings, like e.g.

x0,1yx1,0y

x1,1y

x0,2yx2,0y

x0,0y

.

.

.
.
.
.

.

.

.

ăăăăăă

ăăă

ăăă
ăăăăăă

pN2,ďˆq

5/15

QUASI-ORDERINGS

We consider quasi-orderings, like e.g.

a b

ε

ab ba

aba

aabb
ăăă ăă ă

ăă ă

ăă ă

ăăă ăăă

pA˚,ďprefq

5/15

QUASI-ORDERINGS

We consider quasi-orderings, like e.g.

a b

ε

ab ba

aba

aabb

ăăă

ăăă
ăăă

ăă ă

ăăă

ăă ă

pA˚,ďlexq

pA˚,ďlexq is a total/linear ordering that contains/extends pA˚,ďprefq

5/15

QUASI-ORDERINGS

We consider quasi-orderings, like e.g.

a b

ε

ab ba

aba bca

aabb ąąą

ăă ă
ăă ă

ăă ă
ăă ă

ąąą

ăă ă
ăăă ăăă

pA˚,ď˚q

ď˚ is the subsequence/subword ordering. It extends ďpref

5/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

X

X

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded and has the

finite antichain property

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

X

X

– FAC: no infinite set tx0,x1,x2, . . .u of pairwise incomparable elements

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded and has the

finite antichain property

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

X

X

– FAC: no infinite set tx0,x1,x2, . . .u of pairwise incomparable elements

6/15

WELL-QUASI ORDERINGS (WQO)
A WQO is a quasi-ordering pX,ďq that is well-founded and has the

finite antichain property

pZ,ďq

pZ,ďdivq

pN2,ďˆq

pA˚,ďprefq

pA˚,ď˚q

pA˚,ďlexq

– WF: no infinite decreasing sequence x0 ą x1 ą x2 ą ¨¨ ¨

X

X

– FAC: no infinite set tx0,x1,x2, . . .u of pairwise incomparable elements

X
X

X

X

6/15

OTHER WQO FACTS

Many characterizations: pX,ďq is wqo iff

§ it is WF and FAC;

§ every infinite sequence x0,x1,x2, . . . is good, i.e. contains an

increasing pair xi ď xj (for some i ă j);

§ every infinite sequence x0,x1,x2, . . . is perfect, i.e. contains an

infinite increasing subsequence xi0 ď xi1 ď xi2 ď ¨¨ ¨ (with

i0 ă i1 ă i2 ă ¨¨ ¨);

§ every linearization pX,ď 1q of ď is a wellorder.

Many ways to construct WQOs:

§ Cartesian products, powersets, ..

§ sequences, trees, graphs.

7/15

Part 1

Basics of WSTS

8/15

WELL-STRUCTURED SYSTEMS

In program verification, wqo’s appear prominently in well-structured

systems (WSTS).

Def. A WSTS is a system pS,−Ñ,ďq where

1. pS,−Ñq with −Ñ Ď SˆS is a transition system

2. the set of states pS,ďq is wqo, and

3. the transition relation is compatible with the ordering (also called

“monotonic”): s−Ñ t and s ď s 1 imply s 1
−Ñ t 1 for some t 1 ě t

9/15

SOME WSTS’S: MONOTONIC COUNTER MACHINES

ℓ0 ℓ1 ℓ2 ℓ3
c1++

c2>0? c2-- c3:=0

c1ą“8?c1:=c3

1c2

0c1

4c3

A run of M: pℓ0,0,1,4q −Ñ pℓ1,1,1,4q −Ñ pℓ2,1,0,4q −Ñ pℓ3,1,0,0q

Ordering states: pℓ1,0,0,0q ď pℓ1,0,1,2q but pℓ1,0,0,0q ę pℓ2,0,1,2q.
This is wqo as a product of wqo’s: pLoc,“q ˆ pN3,ďˆq

Compatibility: easily checked when guards are upward-closed and

assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast

protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy

monotonicity

10/15

SOME WSTS’S: MONOTONIC COUNTER MACHINES

ℓ0 ℓ1 ℓ2 ℓ3
c1++

c2>0? c2-- c3:=0

c1ą“8?c1:=c3

1c2

0c1

4c3

A run of M: pℓ0,0,1,4q −Ñ pℓ1,1,1,4q −Ñ pℓ2,1,0,4q −Ñ pℓ3,1,0,0q

Ordering states: pℓ1,0,0,0q ď pℓ1,0,1,2q but pℓ1,0,0,0q ę pℓ2,0,1,2q.
This is wqo as a product of wqo’s: pLoc,“q ˆ pN3,ďˆq

Compatibility: easily checked when guards are upward-closed and

assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast

protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy

monotonicity

10/15

SOME WSTS’S: MONOTONIC COUNTER MACHINES

ℓ0 ℓ1 ℓ2 ℓ3
c1++

c2>0? c2-- c3:=0

c1ą“8?c1:=c3

1c2

0c1

4c3

A run of M: pℓ0,0,1,4q −Ñ pℓ1,1,1,4q −Ñ pℓ2,1,0,4q −Ñ pℓ3,1,0,0q

Ordering states: pℓ1,0,0,0q ď pℓ1,0,1,2q but pℓ1,0,0,0q ę pℓ2,0,1,2q.
This is wqo as a product of wqo’s: pLoc,“q ˆ pN3,ďˆq

Compatibility: easily checked when guards are upward-closed and

assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast

protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy

monotonicity

10/15

SOME WSTS’S: MONOTONIC COUNTER MACHINES

ℓ0 ℓ1 ℓ2 ℓ3
c1++

c2>0? c2-- c3:=0

c1ą“8?c1:=c3

1c2

0c1

4c3

A run of M: pℓ0,0,1,4q −Ñ pℓ1,1,1,4q −Ñ pℓ2,1,0,4q −Ñ pℓ3,1,0,0q

Ordering states: pℓ1,0,0,0q ď pℓ1,0,1,2q but pℓ1,0,0,0q ę pℓ2,0,1,2q.
This is wqo as a product of wqo’s: pLoc,“q ˆ pN3,ďˆq

Compatibility: easily checked when guards are upward-closed and

assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast

protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy

monotonicity

10/15

SOME WSTS’S: MONOTONIC COUNTER MACHINES

ℓ0 ℓ1 ℓ2 ℓ3
c1++

c2>0? c2-- c3:=0

c1ą“8?c1:=c3

1c2

0c1

4c3

A run of M: pℓ0,0,1,4q −Ñ pℓ1,1,1,4q −Ñ pℓ2,1,0,4q −Ñ pℓ3,1,0,0q

Ordering states: pℓ1,0,0,0q ď pℓ1,0,1,2q but pℓ1,0,0,0q ę pℓ2,0,1,2q.
This is wqo as a product of wqo’s: pLoc,“q ˆ pN3,ďˆq

Compatibility: easily checked when guards are upward-closed and

assignments are monotonic functions of the variables.

Related models: Petri nets; vector additions systems; broadcast

protocols; etc.

NB. Minsky (counter) machines have zero-tests, hence don’t enjoy

monotonicity

10/15

SOME WSTS’S: INTEGRAL RELATIONAL AUTOMATA

ℓ0 ℓ1 ℓ2

c1ăc2?
c2:=??; c1:=c3

c3:=-1 c1“8ąc2“c3?

0c2

1c1

´4c3

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use ďˆ to compare states!! Rather

pa1, . . . ,akqďsparsepb1, . . . ,bkq

def
ô @i, j “ 1, . . . ,k :

`

ai ď aj iff bi ď bj
˘

^
`

|ai ´aj| ď |bi ´bj|
˘

.

Fact. pZk,ďsparseq is wqo

Compatibility: We use

pℓ,a1, . . . ,akq ď pℓ 1,b1, . . . ,bkq
def
ô (1)

ℓ “ ℓ 1 ^ pa1, . . . ,ak,´1,8q ďsparse pb1, . . . ,bk,´1,8q .

11/15

SOME WSTS’S: INTEGRAL RELATIONAL AUTOMATA

ℓ0 ℓ1 ℓ2

c1ăc2?
c2:=??; c1:=c3

c3:=-1 c1“8ąc2“c3?

0c2

1c1

´4c3

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use ďˆ to compare states!! Rather

pa1, . . . ,akqďsparsepb1, . . . ,bkq

def
ô @i, j “ 1, . . . ,k :

`

ai ď aj iff bi ď bj
˘

^
`

|ai ´aj| ď |bi ´bj|
˘

.

Fact. pZk,ďsparseq is wqo

Compatibility: We use

pℓ,a1, . . . ,akq ď pℓ 1,b1, . . . ,bkq
def
ô (1)

ℓ “ ℓ 1 ^ pa1, . . . ,ak,´1,8q ďsparse pb1, . . . ,bk,´1,8q .

11/15

SOME WSTS’S: INTEGRAL RELATIONAL AUTOMATA

ℓ0 ℓ1 ℓ2

c1ăc2?
c2:=??; c1:=c3

c3:=-1 c1“8ąc2“c3?

0c2

1c1

´4c3

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use ďˆ to compare states!! Rather

pa1, . . . ,akqďsparsepb1, . . . ,bkq

def
ô @i, j “ 1, . . . ,k :

`

ai ď aj iff bi ď bj
˘

^
`

|ai ´aj| ď |bi ´bj|
˘

.

Fact. pZk,ďsparseq is wqo

Compatibility: We use

pℓ,a1, . . . ,akq ď pℓ 1,b1, . . . ,bkq
def
ô (1)

ℓ “ ℓ 1 ^ pa1, . . . ,ak,´1,8q ďsparse pb1, . . . ,bk,´1,8q .

11/15

SOME WSTS’S: INTEGRAL RELATIONAL AUTOMATA

ℓ0 ℓ1 ℓ2

c1ăc2?
c2:=??; c1:=c3

c3:=-1 c1“8ąc2“c3?

0c2

1c1

´4c3

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use ďˆ to compare states!! Rather

pa1, . . . ,akqďsparsepb1, . . . ,bkq

def
ô @i, j “ 1, . . . ,k :

`

ai ď aj iff bi ď bj
˘

^
`

|ai ´aj| ď |bi ´bj|
˘

.

Fact. pZk,ďsparseq is wqo

Compatibility: We use

pℓ,a1, . . . ,akq ď pℓ 1,b1, . . . ,bkq
def
ô (1)

ℓ “ ℓ 1 ^ pa1, . . . ,ak,´1,8q ďsparse pb1, . . . ,bk,´1,8q .

11/15

SOME WSTS’S: LOSSY CHANNEL SYSTEMS (LCS)

A state s “ pℓ1,ℓ2,w1,w2q with wi P A˚.

E.g., w1 “ hup.ack.ack.

Reliable steps: s−Ñrel s
1 read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

s−Ñ s 1 def
ô s ě˚ t−Ñrel t

1 ě˚ s 1 for some t,t 1 P S

where pS,Ďq is the wqo pLoc1,“q ˆ pLoc2,“q ˆ pA˚
c1
,ď˚q ˆ pA˚

c2
,ď˚q

A model useful for concurrent protocols but also timed automata,

metric temporal logic, products of modal logics, ...
12/15

SOME WSTS’S: LOSSY CHANNEL SYSTEMS (LCS)

A state s “ pℓ1,ℓ2,w1,w2q with wi P A˚.

E.g., w1 “ hup.ack.ack.

Reliable steps: s−Ñrel s
1 read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

s−Ñ s 1 def
ô s ě˚ t−Ñrel t

1 ě˚ s 1 for some t,t 1 P S

where pS,Ďq is the wqo pLoc1,“q ˆ pLoc2,“q ˆ pA˚
c1
,ď˚q ˆ pA˚

c2
,ď˚q

A model useful for concurrent protocols but also timed automata,

metric temporal logic, products of modal logics, ...
12/15

SOME WSTS’S: LOSSY CHANNEL SYSTEMS (LCS)

A state s “ pℓ1,ℓ2,w1,w2q with wi P A˚.

E.g., w1 “ hup.ack.ack.

Reliable steps: s−Ñrel s
1 read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

s−Ñ s 1 def
ô s ě˚ t−Ñrel t

1 ě˚ s 1 for some t,t 1 P S

where pS,Ďq is the wqo pLoc1,“q ˆ pLoc2,“q ˆ pA˚
c1
,ď˚q ˆ pA˚

c2
,ď˚q

A model useful for concurrent protocols but also timed automata,

metric temporal logic, products of modal logics, ...
12/15

SOME WSTS’S: BROADCAST PROTOCOLS

Broadcast protocols (Esparza, Finkel, Mayr 1999), aka population

protocols, are dynamic & distributed collections of finite-state

processes communicating via brodcasts (and rendez-vous, not

shown here).

r c

a

q K
d!!

spawn

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,

s “ tc,r,cu, also denoted tc2,ru.

Steps:

tc2,q,ru
sppawnq
−−−−−−Ñ ta2,c,q,ru

s
−Ñ ta4,q,ru

m
−Ñ tc4,r,Ku

d
−Ñ tc,q4,Ku

13/15

SOME WSTS’S: BROADCAST PROTOCOLS

Broadcast protocols (Esparza, Finkel, Mayr 1999), aka population

protocols, are dynamic & distributed collections of finite-state

processes communicating via brodcasts (and rendez-vous, not

shown here).

r c

a

q K
d!!

spawn

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,

s “ tc,r,cu, also denoted tc2,ru.

Steps:

tc2,q,ru
sppawnq
−−−−−−Ñ ta2,c,q,ru

s
−Ñ ta4,q,ru

m
−Ñ tc4,r,Ku

d
−Ñ tc,q4,Ku

13/15

PROVING TERMINATION

r c

a

q K
d!!

spawn

m??

d?? m!!

‚ This protocol has no infinite runs

Proof. Write s “ trn1 ,qn2 ,cn3 ,a˚,K˚u.

In any step s Ñ s 1 the triple xn1,n2,n3y decreases in the

lexicographic ordering

This is the pattern for proofs of termination: one invents a

well-founded measure that decreases with every step

14/15

PROVING TERMINATION

r c

a

q K
d!!

spawn

m??

d?? m!!

‚ This protocol has no infinite runs

Proof. Write s “ trn1 ,qn2 ,cn3 ,a˚,K˚u.

In any step s Ñ s 1 the triple xn1,n2,n3y decreases in the

lexicographic ordering

This is the pattern for proofs of termination: one invents a

well-founded measure that decreases with every step

14/15

PROVING TERMINATION

r c

a

q K
d!!

spawn

m??

d?? m!!

‚ This protocol has no infinite runs

Proof. Write s “ trn1 ,qn2 ,cn3 ,a˚,K˚u.

In any step s Ñ s 1 the triple xn1,n2,n3y decreases in the

lexicographic ordering

This is the pattern for proofs of termination: one invents a

well-founded measure that decreases with every step

14/15

BRODCAST PROTOCOLS ARE WSTS

1. Order the configurations by multiset inclusion, e.g.,

tc,qu Ď tc2,r,qu

2. Observe that steps are monotonic:

s Ñ t^ s Ď s 1
=ñ Dt 1

: s 1 Ñ t 1 ^ t Ď t 1

3. Further observe that pS,Ďq is wqo : it is isomoprhic to N
|Loc|

15/15

BRODCAST PROTOCOLS ARE WSTS

1. Order the configurations by multiset inclusion, e.g.,

tc,qu Ď tc2,r,qu

2. Observe that steps are monotonic:

s Ñ t^ s Ď s 1
=ñ Dt 1

: s 1 Ñ t 1 ^ t Ď t 1

Proof. Case analysis: is s Ñ t an internal move? or a spawning

step? or a broadcasting? or a rendez-vous?

3. Further observe that pS,Ďq is wqo : it is isomoprhic to N
|Loc|

15/15

BRODCAST PROTOCOLS ARE WSTS

1. Order the configurations by multiset inclusion, e.g.,

tc,qu Ď tc2,r,qu

2. Observe that steps are monotonic:

s Ñ t^ s Ď s 1
=ñ Dt 1

: s 1 Ñ t 1 ^ t Ď t 1

3. Further observe that pS,Ďq is wqo : it is isomoprhic to N
|Loc|

15/15

Part 2

Verification of WSTS

1/13

DECIDING TERMINATION FOR WSTS

Lem. [Finite Witnesses for Infinite Runs]

A WSTS S has an infinite run from sinit iff it has a finite run from sinit

that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good
def
ô there exist i ă j s.t. si ď sj

Corollary. One may decide Termination by enumerating all finite runs

from sinit until a good sequence is encountered.

If all runs are bad, the enumeration will eventually exhaust them

NB: This requires some minimal effectiveness assumptions on the

WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and

regular simulation

A similar algorithm allows deciding safety properties

2/13

DECIDING TERMINATION FOR WSTS
Lem. [Finite Witnesses for Infinite Runs]

A WSTS S has an infinite run from sinit iff it has a finite run from sinit

that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good
def
ô there exist i ă j s.t. si ď sj

Proof. ñ: by definition since ď is wqo

ð: good finite run s0
˚
−Ñ si

`
−Ñ sj can be extended by simulating si

`
−Ñ sj

from above: sj
`
−Ñ s2j´i, then s2j´i

`
−Ñ s3j´2i, etc.

Corollary. One may decide Termination by enumerating all finite runs

from sinit until a good sequence is encountered.

If all runs are bad, the enumeration will eventually exhaust them

NB: This requires some minimal effectiveness assumptions on the

WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and

regular simulation

A similar algorithm allows deciding safety properties

2/13

DECIDING TERMINATION FOR WSTS

Lem. [Finite Witnesses for Infinite Runs]

A WSTS S has an infinite run from sinit iff it has a finite run from sinit

that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good
def
ô there exist i ă j s.t. si ď sj

Corollary. One may decide Termination by enumerating all finite runs

from sinit until a good sequence is encountered.

If all runs are bad, the enumeration will eventually exhaust them

NB: This requires some minimal effectiveness assumptions on the

WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and

regular simulation

A similar algorithm allows deciding safety properties

2/13

Part 3a

Complexity: Upper Bounds

3/13

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q K
d!!

s

m??

d?? m!!

“Doubling” run: tcn,q,pK˚qu
sn
−−Ñ ta2n,q,pK˚qu

m
−Ñ tc2n,pK˚qu

Building up: tc2
0

,qn,ru
s2

0
m

−−−Ñ tc2
1

,qn´1,ru
s2

1
m

−−−Ñ tc2
2

,qn´2,ru Ñ

¨¨ ¨ Ñ tc2
n´1

,q,ru
s2

n´1
m

−−−−−Ñ tc2
n
,ru

d
−Ñ tc2

0

,q2nu

Then: tc,q,rnu
˚
−Ñ tc,q2n ,rn´1u

˚
−Ñ tc,qtowerpnqu

4/13

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q K
d!!

s

m??

d?? m!!

“Doubling” run: tcn,q,pK˚qu
sn
−−Ñ ta2n,q,pK˚qu

m
−Ñ tc2n,pK˚qu

Building up: tc2
0

,qn,ru
s2

0
m

−−−Ñ tc2
1

,qn´1,ru
s2

1
m

−−−Ñ tc2
2

,qn´2,ru Ñ

¨¨ ¨ Ñ tc2
n´1

,q,ru
s2

n´1
m

−−−−−Ñ tc2
n
,ru

d
−Ñ tc2

0

,q2nu

Then: tc,q,rnu
˚
−Ñ tc,q2n ,rn´1u

˚
−Ñ tc,qtowerpnqu

4/13

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q K
d!!

s

m??

d?? m!!

“Doubling” run: tcn,q,pK˚qu
sn
−−Ñ ta2n,q,pK˚qu

m
−Ñ tc2n,pK˚qu

Building up: tc2
0

,qn,ru
s2

0
m

−−−Ñ tc2
1

,qn´1,ru
s2

1
m

−−−Ñ tc2
2

,qn´2,ru Ñ

¨¨ ¨ Ñ tc2
n´1

,q,ru
s2

n´1
m

−−−−−Ñ tc2
n
,ru

d
−Ñ tc2

0

,q2nu

Then: tc,q,rnu
˚
−Ñ tc,q2n ,rn´1u

˚
−Ñ tc,qtowerpnqu

where towerpnq
def
“ 22

...

2
+

n times

4/13

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q K
d!!

s

m??

d?? m!!

“Doubling” run: tcn,q,pK˚qu
sn
−−Ñ ta2n,q,pK˚qu

m
−Ñ tc2n,pK˚qu

Building up: tc2
0

,qn,ru
s2

0
m

−−−Ñ tc2
1

,qn´1,ru
s2

1
m

−−−Ñ tc2
2

,qn´2,ru Ñ

¨¨ ¨ Ñ tc2
n´1

,q,ru
s2

n´1
m

−−−−−Ñ tc2
n
,ru

d
−Ñ tc2

0

,q2nu

Then: tc,q,rnu
˚
−Ñ tc,q2n ,rn´1u

˚
−Ñ tc,qtowerpnqu

ñ Runs of terminating systems may have nonelementary lengths

ñ Running time of generic algorithm verifying termination is not

elementary for broadcast protocols

4/13

THE FAST-GROWING HIERARCHY

An ordinal-indexed family pFαqαPOrd of functions N Ñ N

F0pxq
def
“ x`1 Fα`1pxq

def
“

x`1
hkkkkkkikkkkkkj

FαpFαp. . .Fαpxq . . .qq

Fωpxq
def
“ Fx`1pxq

gives F1pxq „ 2x, F2pxq „ 2x, F3pxq „ towerpxq and

Fωpxq „ ACKERMANNpxq, the first Fα that is not primitive recursive.

Fλpxq
def
“ Fλx

pxq for λ a limit ordinal with a fundamental sequence

λ0 ă λ1 ă λ2 ă ¨¨ ¨ ă λ.

E.g. Fω2pxq“Fω¨px̀ 1qpxq“Fω¨x̀ x̀ 1pxq“

x̀ 1
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Fω¨x̀ xpFω¨x̀ xp..Fω¨x̀ xpxq..qq

Fα
def
“ all functions computable in time F

Op1q
α (very robust).

5/13

THE FAST-GROWING HIERARCHY

An ordinal-indexed family pFαqαPOrd of functions N Ñ N

F0pxq
def
“ x`1 Fα`1pxq

def
“

x`1
hkkkkkkikkkkkkj

FαpFαp. . .Fαpxq . . .qq

Fωpxq
def
“ Fx`1pxq

gives F1pxq „ 2x, F2pxq „ 2x, F3pxq „ towerpxq and

Fωpxq „ ACKERMANNpxq, the first Fα that is not primitive recursive.

Fλpxq
def
“ Fλx

pxq for λ a limit ordinal with a fundamental sequence

λ0 ă λ1 ă λ2 ă ¨¨ ¨ ă λ.

E.g. Fω2pxq“Fω¨px̀ 1qpxq“Fω¨x̀ x̀ 1pxq“

x̀ 1
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Fω¨x̀ xpFω¨x̀ xp..Fω¨x̀ xpxq..qq

Fα
def
“ all functions computable in time F

Op1q
α (very robust).

5/13

THE FAST-GROWING HIERARCHY

An ordinal-indexed family pFαqαPOrd of functions N Ñ N

F0pxq
def
“ x`1 Fα`1pxq

def
“

x`1
hkkkkkkikkkkkkj

FαpFαp. . .Fαpxq . . .qq

Fωpxq
def
“ Fx`1pxq

gives F1pxq „ 2x, F2pxq „ 2x, F3pxq „ towerpxq and

Fωpxq „ ACKERMANNpxq, the first Fα that is not primitive recursive.

Fλpxq
def
“ Fλx

pxq for λ a limit ordinal with a fundamental sequence

λ0 ă λ1 ă λ2 ă ¨¨ ¨ ă λ.

E.g. Fω2pxq“Fω¨px̀ 1qpxq“Fω¨x̀ x̀ 1pxq“

x̀ 1
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Fω¨x̀ xpFω¨x̀ xp..Fω¨x̀ xpxq..qq

Fα
def
“ all functions computable in time F

Op1q
α (very robust).

5/13

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how

long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over pNk,ďˆq:

— 999, 998, . . . , 1, 0

— p2,2q, p2,1q, p2,0q, p1,999q, . . . , p1,0q, p0,999999999q, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,

and the starting configuration is the input of our problem

6/13

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how

long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over pNk,ďˆq:

— 999, 998, . . . , 1, 0

— p2,2q, p2,1q, p2,0q, p1,999q, . . . , p1,0q, p0,999999999q, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,

and the starting configuration is the input of our problem

6/13

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how

long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over pNk,ďˆq:

— 999, 998, . . . , 1, 0

— p2,2q, p2,1q, p2,0q, p1,999q, . . . , p1,0q, p0,999999999q, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,

and the starting configuration is the input of our problem

6/13

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how

long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over pNk,ďˆq:

— 999, 998, . . . , 1, 0

— p2,2q, p2,1q, p2,0q, p1,999q, . . . , p1,0q, p0,999999999q, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,

and the starting configuration is the input of our problem

6/13

CONTROLLED BAD SEQUENCES

Def. A sequence x0,x1, . . . is controlled
def
ô |xi| ď gipn0q for all

i “ 0,1, . . .

Here the control is the pair pn0,gq of n0 P N and g :N Ñ N.

Fact. For a fixed wqo pA,ď, |.|q and control pn0,gq, there is max

length on controlled bad sequences (Kőnig’s Lemma again)

Write Lg,Apn0q for this maximum length.

Length Function Theorem for pNk,ďˆq [McAloon,Schmitz & S.,...]

— Lg,Nkpn0q ď g 1
kpn0q with g 1 polynomial in g

— g 1
k and Lg,Nk are in Fk`m´1 for g in Fm

7/13

CONTROLLED BAD SEQUENCES

Def. A sequence x0,x1, . . . is controlled
def
ô |xi| ď gipn0q for all

i “ 0,1, . . .

Here the control is the pair pn0,gq of n0 P N and g :N Ñ N.

Fact. For a fixed wqo pA,ď, |.|q and control pn0,gq, there is max

length on controlled bad sequences (Kőnig’s Lemma again)

Write Lg,Apn0q for this maximum length.

Length Function Theorem for pNk,ďˆq [McAloon,Schmitz & S.,...]

— Lg,Nkpn0q ď g 1
kpn0q with g 1 polynomial in g

— g 1
k and Lg,Nk are in Fk`m´1 for g in Fm

7/13

CONTROLLED BAD SEQUENCES

Def. A sequence x0,x1, . . . is controlled
def
ô |xi| ď gipn0q for all

i “ 0,1, . . .

Here the control is the pair pn0,gq of n0 P N and g :N Ñ N.

Fact. For a fixed wqo pA,ď, |.|q and control pn0,gq, there is max

length on controlled bad sequences (Kőnig’s Lemma again)

Write Lg,Apn0q for this maximum length.

Length Function Theorem for pNk,ďˆq [McAloon,Schmitz & S.,...]

— Lg,Nkpn0q ď g 1
kpn0q with g 1 polynomial in g

— g 1
k and Lg,Nk are in Fk`m´1 for g in Fm

7/13

APPLYING TO BROADCAST PROTOCOLS

The runs explored by the Termination algorithm are controlled with

|sinit| and Succ :N Ñ N.

ñ Time/space bound in Fk´1 for broadcast protocols with k states,

and in Fω when k is not fixed.

NB. Similar controls for the backward-chaining Coverability algorithm:

|starget| and Succ.

ñ ¨¨ ¨ same upper bounds ¨ ¨ ¨

This is a general situation:

— WSTS model (or WQO-based algorithm) provides A and g

— WQO-theory provides bounds for Lg,A
ñ Complexity upper bounds for WQO-based algorithm

8/13

APPLYING TO BROADCAST PROTOCOLS

The runs explored by the Termination algorithm are controlled with

|sinit| and Succ :N Ñ N.

ñ Time/space bound in Fk´1 for broadcast protocols with k states,

and in Fω when k is not fixed.

NB. Similar controls for the backward-chaining Coverability algorithm:

|starget| and Succ.

ñ ¨¨ ¨ same upper bounds ¨ ¨ ¨

This is a general situation:

— WSTS model (or WQO-based algorithm) provides A and g

— WQO-theory provides bounds for Lg,A
ñ Complexity upper bounds for WQO-based algorithm

8/13

APPLYING TO BROADCAST PROTOCOLS

The runs explored by the Termination algorithm are controlled with

|sinit| and Succ :N Ñ N.

ñ Time/space bound in Fk´1 for broadcast protocols with k states,

and in Fω when k is not fixed.

NB. Similar controls for the backward-chaining Coverability algorithm:

|starget| and Succ.

ñ ¨¨ ¨ same upper bounds ¨ ¨ ¨

This is a general situation:

— WSTS model (or WQO-based algorithm) provides A and g

— WQO-theory provides bounds for Lg,A
ñ Complexity upper bounds for WQO-based algorithm

8/13

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ˚ is in Fω|Σ|´1 , and in Fωω when

alphabet is not fixed [Cichon,Schmitz& S.]. Applies e.g. to lossy

channel systems.

For sequences over Nk with embedding, LpNkq˚ is in F
ωωk , and in

Fωωω when k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ˚ is in Fε0 . Applies e.g. to

priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for

WQO-based algorithms

Some research goals: more varied/complex wqos (powerset,

restricted families of graphs, ..) & analysis of complex algorithms

9/13

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ˚ is in Fω|Σ|´1 , and in Fωω when

alphabet is not fixed [Cichon,Schmitz& S.]. Applies e.g. to lossy

channel systems.

For sequences over Nk with embedding, LpNkq˚ is in F
ωωk , and in

Fωωω when k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ˚ is in Fε0 . Applies e.g. to

priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for

WQO-based algorithms

Some research goals: more varied/complex wqos (powerset,

restricted families of graphs, ..) & analysis of complex algorithms

9/13

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ˚ is in Fω|Σ|´1 , and in Fωω when

alphabet is not fixed [Cichon,Schmitz& S.]. Applies e.g. to lossy

channel systems.

For sequences over Nk with embedding, LpNkq˚ is in F
ωωk , and in

Fωωω when k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ˚ is in Fε0 . Applies e.g. to

priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for

WQO-based algorithms

Some research goals: more varied/complex wqos (powerset,

restricted families of graphs, ..) & analysis of complex algorithms

9/13

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ˚ is in Fω|Σ|´1 , and in Fωω when

alphabet is not fixed [Cichon,Schmitz& S.]. Applies e.g. to lossy

channel systems.

For sequences over Nk with embedding, LpNkq˚ is in F
ωωk , and in

Fωωω when k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ˚ is in Fε0 . Applies e.g. to

priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for

WQO-based algorithms

Some research goals: more varied/complex wqos (powerset,

restricted families of graphs, ..) & analysis of complex algorithms

9/13

Part 3b

Complexity: Lower Bounds

10/13

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:

The upper bound is tight for the algorithms we presented

But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are

Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart,..]

and Fωω -complete for lossy channel systems [ChambartS’08],

Fωωω -complete for timed-arc Petri nets [HaddadSS’12],

Fε0 -complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:

WSTS models are often used for decidability (or hardness) of

problems in logic.

11/13

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:

The upper bound is tight for the algorithms we presented

But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are

Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart,..]

and Fωω -complete for lossy channel systems [ChambartS’08],

Fωωω -complete for timed-arc Petri nets [HaddadSS’12],

Fε0 -complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:

WSTS models are often used for decidability (or hardness) of

problems in logic.

11/13

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:

The upper bound is tight for the algorithms we presented

But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are

Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart,..]

and Fωω -complete for lossy channel systems [ChambartS’08],

Fωωω -complete for timed-arc Petri nets [HaddadSS’12],

Fε0 -complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:

WSTS models are often used for decidability (or hardness) of

problems in logic.

11/13

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:

The upper bound is tight for the algorithms we presented

But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are

Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart,..]

and Fωω -complete for lossy channel systems [ChambartS’08],

Fωωω -complete for timed-arc Petri nets [HaddadSS’12],

Fε0 -complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:

WSTS models are often used for decidability (or hardness) of

problems in logic.

11/13

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:

The upper bound is tight for the algorithms we presented

But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are

Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart,..]

and Fωω -complete for lossy channel systems [ChambartS’08],

Fωωω -complete for timed-arc Petri nets [HaddadSS’12],

Fε0 -complete for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:

WSTS models are often used for decidability (or hardness) of

problems in logic.

11/13

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved

using the same techniques:

One shows how the WSTS model can weakly compute Fα and its

inverse F´1
α . (Recall: broadcast protocol computing tower function)

Encode initial ordinals in pS,ďq & implement Hardy computations in S.

Hardy computations: pα`1,xq ÞÑ pα,x`1q and pλ,xq ÞÑ pλx,xq.

Main technical issue: robustness

— One easily guarantee s ď t ñ αpsq ď αptq but this does not

guarantee Fαpsqpxq ď Fαptqpxq required for weak computation of Fα.

— We need s ď t ñ αpsq Ď αptq, using an ad-hoc stronger relation

α Ď β that entails Fαpxq ď Fβpxq.

12/13

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved

using the same techniques:

One shows how the WSTS model can weakly compute Fα and its

inverse F´1
α . (Recall: broadcast protocol computing tower function)

Encode initial ordinals in pS,ďq & implement Hardy computations in S.

Hardy computations: pα`1,xq ÞÑ pα,x`1q and pλ,xq ÞÑ pλx,xq.

Main technical issue: robustness

— One easily guarantee s ď t ñ αpsq ď αptq but this does not

guarantee Fαpsqpxq ď Fαptqpxq required for weak computation of Fα.

— We need s ď t ñ αpsq Ď αptq, using an ad-hoc stronger relation

α Ď β that entails Fαpxq ď Fβpxq.

12/13

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved

using the same techniques:

One shows how the WSTS model can weakly compute Fα and its

inverse F´1
α . (Recall: broadcast protocol computing tower function)

Encode initial ordinals in pS,ďq & implement Hardy computations in S.

Hardy computations: pα`1,xq ÞÑ pα,x`1q and pλ,xq ÞÑ pλx,xq.

Main technical issue: robustness

— One easily guarantee s ď t ñ αpsq ď αptq but this does not

guarantee Fαpsqpxq ď Fαptqpxq required for weak computation of Fα.

— We need s ď t ñ αpsq Ď αptq, using an ad-hoc stronger relation

α Ď β that entails Fαpxq ď Fβpxq.

12/13

CONCLUDING REMARKS

‚ Executive Summary

Complexity analysis of WSTS models is possible

We have complexity classes, generic techniques for upper bounds,

catalog of Fα-complete problems, see S. Schmitz. Complexity

hierarchies beyond Elementary. ACM Trans. Computation Theory,

8(1), 2016.

Many applications in verification and logic

‚ Perspectives

Need more length function theorems

There are many models for which complexity has not been narrowed

Would love to have alternative to Hardy computations . . .

13/13

