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17th Mons Theoretical Computer Science Days
joint work with M. Szykuła (Univ. of Wrocław)



Prefix codes

Definition
A set of words is called a prefix code if no word in the set is a prefix
of another word.

Examples: {a,ba}, a∗ba are prefix codes, and {a,aba} is not.

Definition
A word w is called synchronizing for a prefix code X if for any words
u,v such that uwv ∈ X ∗ both uw and wv are in X ∗. A code having a
synchronizing word is also called synchronizing.

Examples: for {a,ba} the word ba is synchronizing.
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Synchronization example

Take a code {a,baab}.

baab a a baab a a baab baab a
ba a baab a a baab a a bbaaba

ba abaabaabaa baab baab a

The word baabbaab is synchronizing: after reading it, only one
interpretation is possible.
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Decoding of prefix codes
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The code 0{0,1}∪1{0,1}2 = {00,01,100,101,110,111}.



Synchronizing Automata
We consider deterministic finite automata without inputs and outputs.

Definition
A (complete) automaton A = (Q,Σ,δ ) is synchronizing, if there exists
a word w ∈ Σ∗ such that after reading this word A is sent to some
particular state regardless of its initial state. Such word is called a
synchronizing word.
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Synchronizing Automata

Definition
Let A = (Q,Σ,δ ) be a partial automaton.
A word w is called synchronizing for A if there exists a state q ∈ Q
such that w maps each state of A either to q or the mapping of w is
undefined for this state, and there is at least one state such that the
mapping of w is defined for it.



Some more definitions

Definition
A prefix code is called maximal if it is not contained in another prefix
code.

The code {aa,b} is not maximal, because it is contained in a
(maximal) code {aa,ab,b}.

Definition
A partial automaton is called strongly connected if for every ordered
pair q,q′ of states there is a word mapping q to q′.
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Codes and Automata

There is a strong relation between prefix codes and DFAs.

Definition
Let A be a DFA with a state r which is the initial and the only
accepting state. A word is called a first return word if it maps r to
itself such that each non-empty prefix does not map r to itself.

Theorem
The set of first return words of a strongly connected

1. partial DFA is a prefix code;

2. complete DFA is a maximal prefix code;

3. partial Huffman decoder is a finite prefix code;

4. Huffman decoder is a finite maximal prefix code.
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Two main synchronization problems

There are two main questions:

1. Extremal: how long can a shortest synchronizing word be?

2. Algorithmic: how hard is it to decide synchronizability or to find
a shortest synchronizing word?
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Extremal

Conjecture (Černý, 1971)

For each synchronizing automaton with n states there exists a
synchronizing word of length (n−1)2.

Proved for several particular classes of automata.

Theorem (Pin, 1983)

For each synchronizing automaton with n states there exists a
synchronizing word of length n3−n

6 .

Theorem (Szykuła, 2018)

For each synchronizing automaton with n states there exists a
synchronizing word of length 15617n3+7500n2+9375n−31250

93750 .

Improvement by 4/46875.
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Algorithmic

Theorem
It can be checked in polynomial time whether a partial deterministic
finite automaton is synchronizing.

SHORT SYNC WORD

Input: A synchronizing partial automaton A;
Output: The length of a shortest synchronizing word for A.

The problem is studied for different classes of automata.
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Approximability

An algorithm is called r -approximation for a minimization problem if
it outputs a solution which is at most r times larger the size of the
optimal solution.

Theorem
SHORT SYNC WORD is in NP.

Theorem
There exists an O(n)-approximation polynomial time algorithm for
SHORT SYNC WORD for partial automata.
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Existing results

Theorem (Eppstein, 1990)

SHORT SYNC WORDS is NP-hard.

Theorem (Berlinkov, 2014)

The SHORT SYNC WORD problem cannot be approximated in
polynomial time within a factor of c logn for some c > 0 for n-state
automata over an alphabet of size n1+γ for every γ > 0 unless P = NP.

Theorem (Gawrychowski, Straszak, 2015)

The SHORT SYNC WORD problem cannot be approximated in
polynomial time within a factor of n1−ε for every ε > 0 for n-state
binary automata unless P = NP.



Literal Decoders

Definition
Given a finite maximal prefix code X over an alphabet Σ, the literal
Huffman decoder recognizing X ∗ is an automaton A = (Q,Σ,δ )
defined as follows. The states of A correspond to all proper prefixes of
the words in X , and the transition function is defined as

δ (q,x) =

{
qx if qx 6∈ X ,
ε if qx ∈ X



Our results

Approximability of SHORT SYNC WORD:

class lower bound upper bound
strongly connected n1−ε O(n)

partial Huffman n
1
2−ε O(n)

Huffman c logn O(n)

literal Huffman 1 O(logn)

All lower bounds are for binary and all upper bound are for general
automata.



Idea of the proof: Huffman decoders

1. Prove c logn-inapproximability for strongly acyclic automata over
an alphabet of size n1+γ (via a reduction from SET COVER).
Strongly acyclic – no cycles but loops in the sink state.

2. Transform a strongly acyclic automaton over k letters into a
Huffman decoder over k + 2 letters with the same length of a shortest
synchronizing word.

3. Make the automaton binary using a composition with a Wielandt
automaton.
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Open problems

Improve lower and upper inapproximability bounds.

Conjecture (R., Szykuła, 2018)

There exists an exact polynomial time algorithm for the SHORT SYNC

WORD problem for literal Huffman decoders.



Mortal Words

Definition
A word w is called mortal for a partial automaton if its action is
undefined for each state of this automaton.

SHORT MORTAL WORD

Input: A partial automaton A with at least one undefined transition;
Output: The length of a shortest mortal word for A.
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Mortal Words

Theorem (R., Szykuła, 2018)

There exists a O(logn)-approximation polynomial time algorithm for
the SHORT MORTAL WORD problem for n-state literal Huffman
decoders. This algorithm always finds a mortal word of length
O(n logn).

Theorem (R., Szykuła, 2018)

Unless P = NP, the SHORT MORTAL WORD problem cannot be
approximated in polynomial time within a factor of
(i) n1−ε for every ε > 0 for n-state binary strongly connected partial
automata;
(ii) c logn for some c > 0 for n-state binary partial Huffman decoders.
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Thank you! Any questions?


