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Patterns

# Pattern: consists of word variables, together with function
variables (morphic or antimorphic permutations) which
act on the words.

xπ(x)xπ(x)⇒ instances are words uvuv, |u | � |v |,⇒ v is
the image of u under some permutation of the alphabet.

EXAMPLE

◦ x � 0112
◦ π : 0→ 1, 1→ 2, 2→ 0,
◦ xπ(x)xπ(x) � 0112︸︷︷︸

x

1220︸︷︷︸
π(x)

0112︸︷︷︸
x

1220︸︷︷︸
π(x)
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Avoidability classics

A word w avoids a pattern P, if it has no instance of P as a factor.

A pattern P is avoidable in alphabet Σ, if there is w ∈ Σω that avoids P.

Thue Morse word

# 0→ 01 and 1→ 10,
t � 0110100110010110 . . .

# Thue Morse word avoids cubes (xxx)

Hall word (studied by Thue and Hall)

# 0→ 012, 1→ 02, and 2→ 1,
h � 012021012102012021 . . .

# Hall word avoids squares (xx)
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Cubic patterns with permutations

Patterns: cubes under permutations, i.e., xπi(x)π j(x).

Theorem

Given the pattern xπi(x)π j(x) and the type of π (morphic or antimorphic),
we can determine all values m such that the pattern is avoidable in Σm .

# i and j are given,

# x can be any factor, and π can be any permutation applied on x

# We want to find an alphabet m such that the pattern
xπi(x)π j(x), i , j, is unavoidable in Σm , for m ≥ k

# The pattern is avoidable in in Σm , for m < k

Manea, Müller, Nowotka: The avoidability of cubes under permutations, (2012)
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Avoidability of longer patterns

EXAMPLE

# Consider xπ3(x)π5(x)
# It is avoidable on Σ � 2, 3
# It becomes unavoidable from Σ � 4
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Patterns of size four with permutations

We try to compute an interval such that all patterns xπi(x)π j(x)πk(x),
with i , j, k ≥ 0, are unavoidable.

# pattern of size four is avoidable in Σ2, Σ3, Σ4, but there exists a
pattern which is unavoidable in Σ5 X

# complete characterisation of the avoidability of patterns of size
four with permutations
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Cubic patterns with permutations

Given i and j, consider the pattern xπi(x)π j(x). We need to define the
following values:

k1 � inf{t : t - |i − j |, t - i , t - j}
k2 � inf{t : t ||i − j |, t - i , t - j}
k3 � inf{t : t |i , t - j}
k4 � inf{t : t - i , t | j}
k � min{max{k1 , k2},max{k1 , k3},max{k1 , k4}}

Theorem

The pattern xπi(x)π j(x), i , j, is unavoidable in Σm , for m ≥ k.
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What are k1, k2, k3, k4?

# k1 � inf{t : t - |i − j |, t - i , t - j} is minimum alphabet that
is needed to model the pattern xπi(x)π j(x), with i , j,
where x, πi(x), π j(x) are not similar together.

# k1 � inf{t : t - |i − j |, t - i , t - j}⇒ xπi(x)π j(x)⇒ 012 label

# k2 � inf{t : t ||i − j |, t - i , t - j}⇒ xπi(x)π j(x)⇒ 011 label
# k3 � inf{t |i , t - j}⇒ xπi(x) π j(x)⇒ 001 label
# k4 � inf{t - i , t | j}⇒ xπi(x)πi(x)⇒ 010 label
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Cubic patterns with permutations

Consider the pattern x , πi(x), π j(x), with i , j. We need to define the
following values:

k1 � inf{t : t - |i − j |, t - i , t - j}
k2 � inf{t : t ||i − j |, t - i , t - j}
k3 � inf{t : t |i , t - j}
k4 � inf{t : t - i , t | j}
k � min{max{k1 , k2},max{k1 , k3},max{k1 , k4}}

Theorem

The pattern x , πi(x), π j(x), i , j, is unavoidable in Σm , for m ≥ k.
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Patterns of size four with permutations

xπi(x)π j(x)πk(x)
k1 � inf{t : t - i , t - j, t - k , t - |i − j |, t - |i − k |, t - | j − k |} 0123
k2 � inf{t : t | i , t - j, t - k , t - | j − k |} 0012
k3 � inf{t : t - i , t | j, t - k , , t - |i − k |} 0102
k4 � inf{t : t - i , t - j, t | |i − k |} 0121
k5 � inf{t : t - i , t - j, t - |i − j |, t - |i − k |, t | | j − k |} 0122
k6 � inf{t : t | i , t | j, t - k} 0001
k7 � inf{t : t | i , t - j, t | k} 0010
k8 � inf{t : t - i , t | j, t | k} 0100
k9 � inf{t : t - i , t | |i − j |, t | |i − k |} 0111
k10 � inf{t : t | i , t - j, t | | j − k |} 0011
k11 � inf{t : t - i , t | j, t | |i − k |} 0101
k12 � inf{t : t - i , t | k , t | |i − j |} 0110
k13 � inf{t : t - i , t - k , t | |i − j |} 0112
k14 � inf{t : t - i , t - j, t | |i − j |} 0120
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Patterns of size four with permutations

Lemma

The pattern xπi(x)π j(x)πk(x), with i , j , k , i is unavoidable in Σm ,
for m > σ.
σ � min{max{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, {k1 , k2 , k3 , k7 , k9},
{k1 , k4 , k5 , k6 , k7}, {k1 , k3 , k6 , k12 , k13}, {k1 , k4 , k6 , k12 , k13}, {k1 , k4 , k9 ,

k12 , k13}, {k1 , k2 , k3 , k7 , k10}, {k1 , k2 , k3 , k8 , k10}, . . .}
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Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square

⇒ (0012, 0122)⇒ (k2 or k5)
# one of the kis that has a gapped square⇒ (0102, 0121)⇒

(k3 or k4),
# one of the kis that contain cubes or two squares⇒ (0001,

0111, 0011)⇒ (k6 or k9 or k10),
# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒

(k7 or k8).
# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)

⇒ (k2 or k5)
# one of the kis that has a gapped square⇒ (0102, 0121)⇒

(k3 or k4),
# one of the kis that contain cubes or two squares⇒ (0001,

0111, 0011)⇒ (k6 or k9 or k10),
# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒

(k7 or k8).
# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square

⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .

Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

Let S1 be the collection of sets of 5 elements that:

# contain k1

# one of the kis whose representation has a prefix or a suffix
square⇒ (0012, 0122)⇒ (k2 or k5)

# one of the kis that has a gapped square⇒ (0102, 0121)⇒
(k3 or k4),

# one of the kis that contain cubes or two squares⇒ (0001,
0111, 0011)⇒ (k6 or k9 or k10),

# one of the kis that contain gapped cubes⇒ (0010, 0100)⇒
(k7 or k8).

# S1 � {{k1 , k2 , k3 , k6 , k7}, {k1 , k2 , k3 , k6 , k8}, . . .
Unary Patterns of Size Four with Morphic Permutations



Algorithm to generate unavoidable cases

# S2 � {{k1 , k3 , k6 , k12 , k13}, {k1 , k4 , k6 , k12 , k13}, . . .}
# S3 � {{k1 , k2 , k3 , k7 , k10}, {k1 , k2 , k3 , k8 , k10}, . . .}
# . . .

# S� S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 ∪ S9 ∪ S10

# Let σ � min{max(S) | S ∈ ∪1≤`≤10S`}. Then pattern of size
four is unavoidable in Σm , for all m > σ.

# The pattern of size four is avoidable for all m ≤ σ − 1, and
becomes unavoidable on m > σ.
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Algorithm to generate avoidable cases

If a set of pattern is unavoidable, all supersets of this set is
unavoidable too.

EXAMPLE

# {k1 , k2 , k3 , k6 , k7} is unavoidable set of pattern

# {k1 , k2 , k3 , k6 , k7 , k8} is unavoidable too
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Algorithm to generate avoidable cases

If a set of pattern is unavoidable, all supersets of this set is
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EXAMPLE
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Algorithm to generate avoidable cases

All subsets of avoidable sets patterns are avoidable too.

EXAMPLE

# The set {k1 , k2 , k5 , k6 , k8 , k14} can be avoided by a word w

# The set {k1 , k2 , k5} can also be avoided by w too

About 1400 avoidable sets of patterns will be generated.
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Algorithm to generate avoidable cases

All subsets of avoidable sets patterns are avoidable too.

EXAMPLE
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Algorithm to generate avoidable cases

Algorithm 1
1: Let n � 10. Using the sets Si , (1 ≤ i ≤ 10), generate all sets of
αis of cardinality n, that have no unavoidable sets of patterns
as subset; show that they are avoidable;

2: For all n from 9 down to 4, generate all sets of cardinality
n that have no unavoidable sets of patterns as subset; these
sets should not be subsets of the avoidable sets of αis of
cardinality n + 1 (to avoid generating repetitive avoidable
sets of cases generated in the past step); show that they are
avoidable.
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Future work

Using SAT solvers and Minizinc, find complete characterisation
of the avoidability of patterns of size four with permutations,
and solve avoiadablity problem for patterns with any length.
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Thank you!
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