Unary Patterns of Size Four with Morphic Permutations

Kamellia Reshadi
kre@informatik.uni-kiel.de

September 10, 2018

Kiel University
Dependable Systems Group

Patterns

- Pattern: consists of word variables, together with function variables (morphic or antimorphic permutations) which act on the words.

Patterns

- Pattern: consists of word variables, together with function variables (morphic or antimorphic permutations) which act on the words.

$$
x \pi(x) x \pi(x)
$$

Patterns

- Pattern: consists of word variables, together with function variables (morphic or antimorphic permutations) which act on the words.
$x \pi(x) x \pi(x) \Rightarrow$ instances are words $u v u v,|u|=|v|$,

Patterns

- Pattern: consists of word variables, together with function variables (morphic or antimorphic permutations) which act on the words.
$x \pi(x) x \pi(x) \Rightarrow$ instances are words $u v u v,|u|=|v|, \Rightarrow v$ is the image of u under some permutation of the alphabet.

Patterns

- Pattern: consists of word variables, together with function variables (morphic or antimorphic permutations) which act on the words.
$x \pi(x) x \pi(x) \Rightarrow$ instances are words $u v u v,|u|=|v|, \Rightarrow v$ is the image of u under some permutation of the alphabet.

EXAMPLE

- $x=0112$
- $\pi: 0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0$,
- $x \pi(x) x \pi(x)=\underbrace{0112}_{x} \underbrace{1220}_{\pi(x)} \underbrace{0112}_{x} \underbrace{1220}_{\pi(x)}$

Avoidability classics

A word w avoids a pattern P, if it has no instance of P as a factor.

Avoidability classics

A word w avoids a pattern P, if it has no instance of P as a factor. A pattern P is avoidable in alphabet Σ, if there is $w \in \Sigma^{\omega}$ that avoids P.

Avoidability classics

A word w avoids a pattern P, if it has no instance of P as a factor. A pattern P is avoidable in alphabet Σ, if there is $w \in \Sigma^{\omega}$ that avoids P.

Thue Morse word

$\bigcirc 0 \rightarrow 01$ and $1 \rightarrow 10$, $\mathbf{t}=0110100110010110 \ldots$

- Thue Morse word avoids cubes (xxx)

Avoidability classics

A word w avoids a pattern P, if it has no instance of P as a factor. A pattern P is avoidable in alphabet Σ, if there is $w \in \Sigma^{\omega}$ that avoids P.

Thue Morse word
$\bigcirc 0 \rightarrow 01$ and $1 \rightarrow 10$, $\mathbf{t}=0110100110010110 \ldots$

- Thue Morse word avoids cubes (xxx)

Hall word (studied by Thue and Hall)

$0 \rightarrow 012,1 \rightarrow 02$, and $2 \rightarrow 1$,
$\mathbf{h}=012021012102012021 \ldots$

- Hall word avoids squares (xx)

- Bischoff, Nowotka: Pattern Avoidability with Involution (2011)
- Currie: Pattern Avoidance with Involution (2011)
- Bischoff, Currie, Nowotka: Unary patterns with involution (2012)
- Chiniforooshan, L. Kari, Xu: Pseudopower Avoidance (2012)

O Manea, Müller, Nowotka: Cubic patterns with permutations (2012)

- Currie, Manea, Nowotka, Reshadi: Unary patterns with permutations (2018)

Cubic patterns with permutations

Patterns: cubes under permutations, i.e., $x \pi^{i}(x) \pi^{j}(x)$.

Theorem

Given the pattern $x \pi^{i}(x) \pi^{j}(x)$ and the type of π (morphic or antimorphic), we can determine all values m such that the pattern is avoidable in Σ_{m}.

Cubic patterns with permutations

Patterns: cubes under permutations, i.e., $x \pi^{i}(x) \pi^{j}(x)$.

Theorem

Given the pattern $x \pi^{i}(x) \pi^{j}(x)$ and the type of π (morphic or antimorphic), we can determine all values m such that the pattern is avoidable in Σ_{m}.

- i and j are given,
- x can be any factor, and π can be any permutation applied on x
- We want to find an alphabet m such that the pattern $x \pi^{i}(x) \pi^{j}(x), i \neq j$, is unavoidable in Σ_{m}, for $m \geq k$
- The pattern is avoidable in in Σ_{m}, for $m<k$

Manea, Müller, Nowotka: The avoidability of cubes under permutations, (2012)

Avoidability of longer patterns

EXAMPLE

Consider $x \pi^{3}(x) \pi^{5}(x)$
O It is avoidable on $\Sigma=2,3$
O It becomes unavoidable from $\Sigma=4$

Patterns of size four with permutations

We try to compute an interval such that all patterns $x \pi^{i}(x) \pi^{j}(x) \pi^{k}(x)$, with $i, j, k \geq 0$, are unavoidable.

Patterns of size four with permutations

We try to compute an interval such that all patterns $x \pi^{i}(x) \pi^{j}(x) \pi^{k}(x)$, with $i, j, k \geq 0$, are unavoidable.
\bigcirc pattern of size four is avoidable in $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$, but there exists a pattern which is unavoidable in $\Sigma_{5} \checkmark$

Patterns of size four with permutations

We try to compute an interval such that all patterns $x \pi^{i}(x) \pi^{j}(x) \pi^{k}(x)$, with $i, j, k \geq 0$, are unavoidable.

O pattern of size four is avoidable in $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$, but there exists a pattern which is unavoidable in $\Sigma_{5} \checkmark$

- complete characterisation of the avoidability of patterns of size four with permutations

Cubic patterns with permutations

Given i and j, consider the pattern $x \pi^{i}(x) \pi^{j}(x)$. We need to define the following values:

$$
\begin{aligned}
& k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \\
& k_{2}=\inf \{t: t| | i-j \mid, t \nmid i, t \nmid j\} \\
& k_{3}=\inf \{t: t \mid i, t \nmid j\} \\
& k_{4}=\inf \{t: t \nmid i, t \mid j\} \\
& k=\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{aligned}
$$

Theorem

The pattern $x \pi^{i}(x) \pi^{j}(x), i \neq j$, is unavoidable in Σ_{m}, for $m \geq k$.

What are $k_{1}, k_{2}, k_{3}, k_{4}$?

$k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\}$ is minimum alphabet that is needed to model the pattern $x \pi^{i}(x) \pi^{j}(x)$, with $i \neq j$, where $x, \pi^{i}(x), \pi^{j}(x)$ are not similar together.
$\bigcirc k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{012}$ label

What are $k_{1}, k_{2}, k_{3}, k_{4}$?

$k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\}$ is minimum alphabet that is needed to model the pattern $x \pi^{i}(x) \pi^{j}(x)$, with $i \neq j$, where $x, \pi^{i}(x), \pi^{j}(x)$ are not similar together.
$k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{012}$ label
$k_{2}=\inf \{t: t| | i-j \mid, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{011}$ label

What are $k_{1}, k_{2}, k_{3}, k_{4}$?

$k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\}$ is minimum alphabet that is needed to model the pattern $x \pi^{i}(x) \pi^{j}(x)$, with $i \neq j$, where $x, \pi^{i}(x), \pi^{j}(x)$ are not similar together.
$\bigcirc k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{012}$ label
$k_{2}=\inf \{t: t| | i-j \mid, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{011}$ label
$\bigcirc k_{3}=\inf \{t \mid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{001}$ label

What are $k_{1}, k_{2}, k_{3}, k_{4}$?

$k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\}$ is minimum alphabet that is needed to model the pattern $x \pi^{i}(x) \pi^{j}(x)$, with $i \neq j$, where $x, \pi^{i}(x), \pi^{j}(x)$ are not similar together.
$\bigcirc k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{012}$ label
$k_{2}=\inf \{t: t| | i-j \mid, t \nmid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow \underline{011}$ label
$k_{3}=\inf \{t \mid i, t \nmid j\} \Rightarrow x \pi^{i}(x) \pi^{j}(x) \Rightarrow$ o01 label
$k_{4}=\inf \{t \nmid i, t \mid j\} \Rightarrow x \pi^{i}(x) \pi^{i}(x) \Rightarrow \underline{\mathbf{0 1 0} \text { label }}$

Cubic patterns with permutations

Consider the pattern $x, \pi^{i}(x), \pi^{j}(x)$, with $i \neq j$. We need to define the following values:

$$
\begin{aligned}
& k_{1}=\inf \{t: t \nmid|i-j|, t \nmid i, t \nmid j\} \\
& k_{2}=\inf \{t: t \| i-j \mid, t \nmid i, t \nmid j\} \\
& k_{3}=\inf \{t: t \mid i, t \nmid j\} \\
& k_{4}=\inf \{t: t \nmid i, t \mid j\} \\
& k=\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{aligned}
$$

Theorem

The pattern $x, \pi^{i}(x), \pi^{j}(x), i \neq j$, is unavoidable in Σ_{m}, for $m \geq k$.

Patterns of size four with permutations

$x \pi^{i}(x) \pi^{j}(x) \pi^{k}(x)$

$k_{1}=\inf \{t: t \nmid i, t \nmid j, t \nmid k, t \nmid\|i-j\|, t \nmid\|i-k\|, t \nmid\|j-k\|\}$	0123
$k_{2}=\inf \{t: t\|i, t \nmid j, t \nmid k, t \nmid\| j-k \mid\}$	0012
$k_{3}=\inf \{t: t \nmid i, t\|j, t \nmid k, t \nmid\| i-k \mid\}$	0102
$k_{4}=\inf \{t: t \nmid i, t \nmid j, t\| \| i-k \mid\}$	0121
$k_{5}=\inf \{t: t \nmid i, t \nmid j, t \nmid\|i-j\|, t \nmid\|i-k\|, t\| \| j-k \mid\}$	0122
$k_{6}=\inf \{t: t\|i, t\| j, t \nmid k\}$	0001
$k_{7}=\inf \{t: t\|i, t \nmid j, t\| k\}$	0010
$k_{8}=\inf \{t: t \nmid i, t\|j, t\| k\}$	0100
$k_{9}=\inf \{t: t \nmid i, t\| \| i-j\|, t\|\|i-k\|\}$	0111
$k_{10}=\inf \{t: t\|i, t \nmid j, t\|\|j-k\|\}$	0011
$k_{11}=\inf \{t: t \nmid i, t\|j, t\|\|i-k\|\}$	0101
$k_{12}=\inf \{t: t \nmid i, t\|k, t\|\|i-j\|\}$	0110
$k_{13}=\inf \{t: t \nmid i, t \nmid k, t\| \| i-j \mid\}$	0112
$k_{14}=\inf \{t: t \nmid i, t \nmid j, t\| \| i-j \mid\}$	0120

Patterns of size four with permutations

Lemma

The pattern $x \pi^{i}(x) \pi^{j}(x) \pi^{k}(x)$, with $i \neq j \neq k \neq i$ is unavoidable in Σ_{m}, for $m>\sigma$.
$\sigma=\min \left\{\max \left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{7}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{8}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{7}, k_{9}\right\}\right.$, $\left\{k_{1}, k_{4}, k_{5}, k_{6}, k_{7}\right\},\left\{k_{1}, k_{3}, k_{6}, k_{12}, k_{13}\right\},\left\{k_{1}, k_{4}, k_{6}, k_{12}, k_{13}\right\},\left\{k_{1}, k_{4}, k_{9}\right.$, $\left.\left.k_{12}, k_{13}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{7}, k_{10}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{8}, k_{10}\right\}, \ldots\right\}$

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
O one of the $k_{i} \mathrm{~s}$ whose representation has a prefix or a suffix square \Rightarrow (0012, 0122)

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
O one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{2}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
\bigcirc one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{2}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$
\bigcirc one of the $k_{i} s$ that has a gapped square

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
\bigcirc one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{22}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$
\bigcirc one of the $k_{i} \mathrm{~s}$ that has a gapped square $\Rightarrow(\underline{\mathbf{0} 1} \underline{\mathbf{0} 2}, \underline{\mathbf{0}} \underline{\mathbf{1}} \underline{)}) \Rightarrow$ (k_{3} or k_{4}),

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:contain k_{1}
\bigcirc one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{22}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$
\bigcirc one of the $k_{i} \mathrm{~s}$ that has a gapped square $\Rightarrow(\underline{\mathbf{0} 1} \underline{\mathbf{0} 2}, \underline{\mathbf{0}} \underline{\mathbf{1}} \underline{)}) \Rightarrow$ (k_{3} or k_{4}),
\bigcirc one of the k_{i} s that contain cubes or two squares \Rightarrow (0001, $\mathbf{0 1 1 1}, \underline{\mathbf{0 0 1 1}}) \Rightarrow\left(k_{6}\right.$ or k_{9} or $\left.k_{10}\right)$,

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:
\bigcirc contain k_{1}
\bigcirc one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{22}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$
\bigcirc one of the $k_{i} \mathrm{~s}$ that has a gapped square $\Rightarrow(\underline{\mathbf{0} 1} \underline{\mathbf{0} 2}, \underline{\mathbf{0}} \underline{\mathbf{1}} \underline{)}) \Rightarrow$ (k_{3} or k_{4}),
one of the k_{i} s that contain cubes or two squares \Rightarrow ($\underline{\text { oo01, }}$ $\mathbf{0 1 1 1}, \underline{0011}) \Rightarrow\left(k_{6}\right.$ or k_{9} or $\left.k_{10}\right)$,
\bigcirc one of the $k_{i} \mathrm{~S}$ that contain gapped cubes $\Rightarrow(\underline{\mathbf{0 0 1}} \underline{\mathbf{0}}, \underline{\mathbf{0} 1} \underline{\mathbf{0 0}}) \Rightarrow$ (k_{7} or k_{8}).

Algorithm to generate unavoidable cases

Let δ_{1} be the collection of sets of 5 elements that:
\bigcirc contain k_{1}
\bigcirc one of the $k_{i} \mathrm{~S}$ whose representation has a prefix or a suffix square $\Rightarrow(\underline{0012}, 012 \underline{22}) \Rightarrow\left(k_{2}\right.$ or $\left.k_{5}\right)$
\bigcirc one of the $k_{i} \mathrm{~s}$ that has a gapped square $\Rightarrow(\underline{\mathbf{0} 1} \underline{\mathbf{0} 2}, \underline{\mathbf{0}} \underline{\mathbf{1}} \underline{)}) \Rightarrow$ (k_{3} or k_{4}),
\bigcirc one of the k_{i} s that contain cubes or two squares \Rightarrow ($\underline{0001}$, $\mathbf{0 1 1 1}, \underline{0011}) \Rightarrow\left(k_{6}\right.$ or k_{9} or $\left.k_{10}\right)$,
\bigcirc one of the k_{i} s that contain gapped cubes $\Rightarrow(\underline{\mathbf{0 0 1}} \underline{\mathbf{0}}, \underline{\mathbf{0} 100}) \Rightarrow$ (k_{7} or k_{8}).
$\delta_{1}=\left\{\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{7}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{8}\right\}, \ldots\right.$

Algorithm to generate unavoidable cases

$\mathcal{S}_{2}=\left\{\left\{k_{1}, k_{3}, k_{6}, k_{12}, k_{13}\right\},\left\{k_{1}, k_{4}, k_{6}, k_{12}, k_{13}\right\}, \ldots\right\}$
$\delta_{3}=\left\{\left\{k_{1}, k_{2}, k_{3}, k_{7}, k_{10}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{8}, k_{10}\right\}, \ldots\right\}$

- ...
$\bigcirc \delta_{1}=\delta_{1} \cup \delta_{2} \cup \delta_{3} \cup \delta_{4} \cup \delta_{5} \cup \delta_{6} \cup \delta_{7} \cup \delta_{8} \cup \delta_{9} \cup \delta_{10}$

Algorithm to generate unavoidable cases

$\bigcirc \delta_{2}=\left\{\left\{k_{1}, k_{3}, k_{6}, k_{12}, k_{13}\right\},\left\{k_{1}, k_{4}, k_{6}, k_{12}, k_{13}\right\}, \ldots\right\}$
$\delta_{3}=\left\{\left\{k_{1}, k_{2}, k_{3}, k_{7}, k_{10}\right\},\left\{k_{1}, k_{2}, k_{3}, k_{8}, k_{10}\right\}, \ldots\right\}$
○ ...
$\bigcirc \mathcal{S}=\mathcal{S}_{1} \cup \mathcal{S}_{2} \cup \delta_{3} \cup \mathcal{S}_{4} \cup \mathcal{S}_{5} \cup \mathcal{S}_{6} \cup \mathcal{S}_{7} \cup \mathcal{S}_{8} \cup \mathcal{S}_{9} \cup \mathcal{S}_{10}$
\bigcirc Let $\sigma=\min \left\{\max (S) \mid S \in \cup_{1 \leq \ell \leq 10} S_{\ell}\right\}$. Then pattern of size four is unavoidable in Σ_{m}, for all $m>\sigma$.

The pattern of size four is avoidable for all $m \leq \sigma-1$, and becomes unavoidable on $m>\sigma$.

Algorithm to generate avoidable cases

If a set of pattern is unavoidable, all supersets of this set is unavoidable too.

EXAMPLE

$\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{7}\right\}$ is unavoidable set of pattern

Algorithm to generate avoidable cases

If a set of pattern is unavoidable, all supersets of this set is unavoidable too.

EXAMPLE

- $\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{7}\right\}$ is unavoidable set of pattern
- $\left\{k_{1}, k_{2}, k_{3}, k_{6}, k_{7}, k_{8}\right\}$ is unavoidable too

Algorithm to generate avoidable cases

All subsets of avoidable sets patterns are avoidable too.

EXAMPLE

The set $\left\{k_{1}, k_{2}, k_{5}, k_{6}, k_{8}, k_{14}\right\}$ can be avoided by a word \mathbf{w}

Algorithm to generate avoidable cases

All subsets of avoidable sets patterns are avoidable too.

EXAMPLE

The set $\left\{k_{1}, k_{2}, k_{5}, k_{6}, k_{8}, k_{14}\right\}$ can be avoided by a word \mathbf{w}
OThe set $\left\{k_{1}, k_{2}, k_{5}\right\}$ can also be avoided by \mathbf{w} too

About 1400 avoidable sets of patterns will be generated.

Algorithm to generate avoidable cases

Algorithm 1

1: Let $n=10$. Using the sets $\mathcal{S}_{i},(1 \leq i \leq 10)$, generate all sets of α_{i} s of cardinality n, that have no unavoidable sets of patterns as subset; show that they are avoidable;
2: For all n from 9 down to 4 , generate all sets of cardinality n that have no unavoidable sets of patterns as subset; these sets should not be subsets of the avoidable sets of $\alpha_{i} s$ of cardinality $n+1$ (to avoid generating repetitive avoidable sets of cases generated in the past step); show that they are avoidable.

Future work

Using SAT solvers and Minizinc, find complete characterisation of the avoidability of patterns of size four with permutations, and solve avoiadablity problem for patterns with any length.

Thank you!

