Abelian Anti-Powers in Infinite Words

Gabriele Fici Mickaël Postic Manuel Silva

Journées Montoises 2018
Talence, France, 10-14 September 2018

Regularities in Combinatorics

In combinatorics on words, the notion of regularity is often associated with repetitions of equal objects.

Regularities in Combinatorics

In combinatorics on words, the notion of regularity is often associated with repetitions of equal objects.

For example, a n-power is the concatenation of n equal blocks.

Regularities in Combinatorics

In combinatorics on words, the notion of regularity is often associated with repetitions of equal objects.

For example, a n-power is the concatenation of n equal blocks.

We consider a different point of view, in which we look for diversity. That is, definitions of regularity based on all-distinct objects.

Regularities in Combinatorics

In combinatorics on words, the notion of regularity is often associated with repetitions of equal objects.

For example, a n-power is the concatenation of n equal blocks.

We consider a different point of view, in which we look for diversity. That is, definitions of regularity based on all-distinct objects.

This point of view was introduced by G. Fici, A. Restivo, M. Silva and L. Q. Zamboni in Anti-powers in infinite words, J. Comb. Theory, Ser. A, 2018].

Unavoidable Regularities

In this contribution, we focus on infinite words, that are infinite sequences of symbols drawn from a finite alphabet A.

Unavoidable Regularities

In this contribution, we focus on infinite words, that are infinite sequences of symbols drawn from a finite alphabet A.

We are interested in combinatorial properties of factors of infinite words.

Unavoidable Regularities

In this contribution, we focus on infinite words, that are infinite sequences of symbols drawn from a finite alphabet A.

We are interested in combinatorial properties of factors of infinite words.
For example, we want to know if some kind of pattern does/does not appear inside a given infinite word.

Unavoidable Regularities

In this contribution, we focus on infinite words, that are infinite sequences of symbols drawn from a finite alphabet A.

We are interested in combinatorial properties of factors of infinite words.
For example, we want to know if some kind of pattern does/does not appear inside a given infinite word.

Example (Thue, 1906)

The word

$$
w=21020121012021020120210121 \cdots
$$

obtained as the fixed point of the substitution $0 \mapsto 1,1 \mapsto 20,2 \mapsto 210$, does not contain any square, that is, a pattern of the form $x x$.

Anti-powers

Fici et al. introduced the notion of an anti-power and showed that it gives rise to a new unavoidable regularity.

Anti-powers

Fici et al. introduced the notion of an anti-power and showed that it gives rise to a new unavoidable regularity.

Definition

A power of order n is a pattern of the form x^{n} (e.g., a square if $n=2$).
An anti-power of order n is a pattern of the form $x_{1} x_{2} \cdots x_{n}$ where the x_{i} have the same length and are all distinct.

Anti-powers

Fici et al. introduced the notion of an anti-power and showed that it gives rise to a new unavoidable regularity.

Definition

A power of order n is a pattern of the form x^{n} (e.g., a square if $n=2$).
An anti-power of order n is a pattern of the form $x_{1} x_{2} \cdots x_{n}$ where the x_{i} have the same length and are all distinct.

Theorem

Every infinite word contains powers of any order or anti-powers of any order.

Abelian anti-powers

Abelian powers are well studied regularities.

Abelian anti-powers

Abelian powers are well studied regularities.
Although it is not possible to construct a word without abelian squares on three letters alphabets, Dekking showed that there exist words avoiding 3 -abelian powers.

Abelian anti-powers

Abelian powers are well studied regularities.
Although it is not possible to construct a word without abelian squares on three letters alphabets, Dekking showed that there exist words avoiding 3 -abelian powers.

We then introduce the notion of abelian anti-powers which is the abelian version of anti-powers:

Abelian anti-powers

Abelian powers are well studied regularities.
Although it is not possible to construct a word without abelian squares on three letters alphabets, Dekking showed that there exist words avoiding 3 -abelian powers.

We then introduce the notion of abelian anti-powers which is the abelian version of anti-powers:

Definition

An abelian power of order n is a pattern of the form $u_{1} u_{2} \ldots u_{n}$ where for every i, u_{i} is a permutation of u_{1} (which we will denote $u_{i} \sim_{a b} u_{1}$).

An abelian anti-power of order n is a pattern of the form $u_{1} u_{2} \cdots u_{n}$ where the u_{i} have the same length, and for all $(i, j), u_{i} \varkappa_{a b} u_{j}$.

Abelian anti-powers

In the context of finite alphabets, there is a usefull tool to study abelian powers and anti-powers : the Parikh vector.

Abelian anti-powers

In the context of finite alphabets, there is a usefull tool to study abelian powers and anti-powers : the Parikh vector.

Definition

Suppose \mathbb{A} is a n-letter alphabet, and u is a finite word on \mathbb{A}. Then the Parikh vector of u, noted $\Psi(u)$, is the vector of frequencies of the letters of \mathbb{A} in u :

$$
\Psi(u)=\left(|u|_{a_{1}}, \ldots,|u|_{a_{n}}\right) .
$$

Abelian anti-powers

In the context of finite alphabets, there is a usefull tool to study abelian powers and anti-powers : the Parikh vector.

Definition

Suppose \mathbb{A} is a n-letter alphabet, and u is a finite word on \mathbb{A}. Then the Parikh vector of u, noted $\Psi(u)$, is the vector of frequencies of the letters of \mathbb{A} in u :

$$
\Psi(u)=\left(|u|_{a_{1}}, \ldots,|u|_{a_{n}}\right) .
$$

We can then rewrite the previous definitions:

Definition

An abelian power of order n is a pattern of the form $u_{1} u_{2} \ldots u_{n}$ where for every $i, \Psi\left(u_{i}\right)=\Psi\left(u_{1}\right)$.

An abelian anti-power of order n is a pattern of the form $u_{1} u_{2} \cdots u_{n}$ where the u_{i} have the same length, and $\forall(i, j), \Psi\left(u_{i}\right) \neq \Psi\left(u_{j}\right)$.

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere :

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere : periodic words,

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere : periodic words, words with bounded abelian complexity.

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere : periodic words, words with bounded abelian complexity.

In fact, we proved that some words with unbounded abelian complexity do not contain abelian anti-powers of any order:

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere : periodic words, words with bounded abelian complexity.

In fact, we proved that some words with unbounded abelian complexity do not contain abelian anti-powers of any order:

Definition

The Sierpinski word s is the fixed point starting with a of the substitution

$$
\begin{aligned}
\sigma: a & \rightarrow a b a \\
b & \rightarrow b b b
\end{aligned}
$$

So s begins as follows : ababbbababbbbbbbbbababbbabab ${ }^{27} a \cdots$

Words avoiding abelian anti-powers

Abelian anti-powers of any order are not everywhere : periodic words, words with bounded abelian complexity.

In fact, we proved that some words with unbounded abelian complexity do not contain abelian anti-powers of any order:

Definition

The Sierpinski word s is the fixed point starting with a of the substitution

$$
\begin{aligned}
\sigma: a & \rightarrow a b a \\
b & \rightarrow b b b
\end{aligned}
$$

So s begins as follows : ababbbababbbbbbbbbababbbabab ${ }^{27} a \cdots$

Theorem

The Sierpiǹski word (whose abelian complexity grows logarithmically) does not contain abelian 11-anti-powers

Words containing abelian anti-powers

Over a two letters alphabet, any word with full factor complexity contains abelian anti-powers of any order.

Words containing abelian anti-powers

Over a two letters alphabet, any word with full factor complexity contains abelian anti-powers of any order.

Also, computer simulations show that the Dekking's avoiding cube word seems to have such property, but we still haven't found a proof of this.

Words containing abelian anti-powers

Over a two letters alphabet, any word with full factor complexity contains abelian anti-powers of any order.

Also, computer simulations show that the Dekking's avoiding cube word seems to have such property, but we still haven't found a proof of this.

There is a class of words with linear abelian complexity which we were able to show contain abelian anti-powers of any order: paperfolding words.

Words containing abelian anti-powers

Over a two letters alphabet, any word with full factor complexity contains abelian anti-powers of any order.

Also, computer simulations show that the Dekking's avoiding cube word seems to have such property, but we still haven't found a proof of this.

There is a class of words with linear abelian complexity which we were able to show contain abelian anti-powers of any order: paperfolding words.

In a recent article, Stepan Holub proved that these words contain abelian powers of any order

Paperfolding words

The regular paperfolding word
$\mathbf{p}=00100110001101100010011100110110 \cdots$ is obtained by folding a paper at each step in the same way, and the to read the sequence of ridges and valleys you encounter.

Paperfolding words

The regular paperfolding word
$\mathbf{p}=00100110001101100010011100110110 \cdots$ is obtained by folding a paper at each step in the same way, and the to read the sequence of ridges and valleys you encounter.

Definition

Let $p_{0}=(0 ? 1 ?)^{\omega}$ and, for every $n \geq 0, p_{n}$ as the word obtained from p_{n-1} by replacing the symbols ? with the letters of p_{0} (with $\left.p_{-1}={ }^{\omega}\right)$. Then

$$
\begin{aligned}
& p_{0}=0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? \cdots, \\
& p_{1}=001 ? 011 ? 001 ? 011 ? 001 ? 011 ? 001 ? \cdots, \\
& p_{2}=0010011 ? 0011011 ? 0010011 ? 0011 \cdots, \\
& p_{3}=001001100011011 ? 001001110011 \cdots,
\end{aligned}
$$

etc. Then, $\mathbf{p}=\lim _{n \rightarrow \infty} p_{n}$ is the regular paperfolding word.

Paperfolding words

This construction can be slightly modified to obtain all paperfolding words. Other paperfolding words are obtained by following a sequence of instructions giving the way the paper must be fold at each step.

Paperfolding words

This construction can be slightly modified to obtain all paperfolding words. Other paperfolding words are obtained by following a sequence of instructions giving the way the paper must be fold at each step.

Consider $\overline{p_{0}}=(1 ? 0 ?)^{\omega}$.

Paperfolding words

This construction can be slightly modified to obtain all paperfolding words. Other paperfolding words are obtained by following a sequence of instructions giving the way the paper must be fold at each step.

Consider $\overline{p_{0}}=(1 ? 0 ?)^{\omega}$.
At each step, one can decide to replace the ? by p_{0} or by $\overline{p_{0}}$. This correspond to folding to the right or to the left.

Paperfolding words

This construction can be slightly modified to obtain all paperfolding words. Other paperfolding words are obtained by following a sequence of instructions giving the way the paper must be fold at each step.

Consider $\overline{p_{0}}=(1 ? 0 ?)^{\omega}$.
At each step, one can decide to replace the ? by p_{0} or by $\overline{p_{0}}$. This correspond to folding to the right or to the left.

Definition

Let $\mathbf{b} \in\{0,1\}^{\mathbb{N}}$ be the sequence of instructions. For $n \in \mathbb{Z}^{+}$, let $p_{b_{n}}$ be obtained by replacing the symbols ? of $p_{b_{n-1}}$ by p_{0} if $b_{n}=1$ and $\overline{p_{0}}$ if $b_{n}=0$. Then

$$
\mathbf{p}_{b}=\lim _{n \rightarrow \infty} p_{b_{n}}
$$

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

The proof is based on a lemma from Holub, which he used in his proof that paperfolding words contain abelian powers of any order.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

The proof is based on a lemma from Holub, which he used in his proof that paperfolding words contain abelian powers of any order.

Consider a paperfolding word and two of its factors, subdivided in m subfactors of equal lenght (we will say m-factors). Write (u_{1}, \ldots, u_{m}) and $\left(v_{1}, \ldots, v_{m}\right)$ the m-uplets of the corresponding Parikh vectors.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

The proof is based on a lemma from Holub, which he used in his proof that paperfolding words contain abelian powers of any order.

Consider a paperfolding word and two of its factors, subdivided in m subfactors of equal lenght (we will say m-factors). Write (u_{1}, \ldots, u_{m}) and $\left(v_{1}, \ldots, v_{m}\right)$ the m-uplets of the corresponding Parikh vectors.

This "additivity" lemma says that, under some conditions, one can find a m-factor whose m-uplet of Parikh vectors is the sum of $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{m}\right)$ (up to something constant).

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

To prove a paperfolding word contains an abelian anti-power of order m, we then have to exhibit a m-factor whose m-uplet of Parikh vectors is filled with pairwise distinct components.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

To prove a paperfolding word contains an abelian anti-power of order m, we then have to exhibit a m-factor whose m-uplet of Parikh vectors is filled with pairwise distinct components.

We first find, using the Toeplitz construction, factors of the paperfolding word of the form $w 1 w$ of lenght $2^{k}-1>m$. This allows us to create m m-factors whose uplets of Parikh vectors are pairwise distinct.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

To prove a paperfolding word contains an abelian anti-power of order m, we then have to exhibit a m-factor whose m-uplet of Parikh vectors is filled with pairwise distinct components.

We first find, using the Toeplitz construction, factors of the paperfolding word of the form $w 1 w$ of lenght $2^{k}-1>m$. This allows us to create m m-factors whose uplets of Parikh vectors are pairwise distinct.

Then, using Holub's lemma, by adding some multiples of their Parikh vectors it is possible to construct a m-factor filled with pairwise distinct components.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

Some more precautions have to be taken to match the conditions of Holub's lemma, although in the case of the regular paperfolding word no effort is required.

Paperfolding Words

Theorem

Every paperfolding word contains abelian anti-powers of any order.

Some more precautions have to be taken to match the conditions of Holub's lemma, although in the case of the regular paperfolding word no effort is required.

This proof allowed us to exhibit a class of words that contain both abelian powers and anti-powers of any order.

Conjecture

Conjecture

Every infinite word contains abelian powers or abelian anti-powers of any order.

Conclusion

We introduced the notion of abelian anti-power, an extension of the anti-powers defined by Fici et al.

Conclusion

We introduced the notion of abelian anti-power, an extension of the anti-powers defined by Fici et al.

We proved that this combinatorial structure sometimes appear in infinite words, and sometimes not. Moreover, some words contain both abelian powers and anti-powers.

Conclusion

We introduced the notion of abelian anti-power, an extension of the anti-powers defined by Fici et al.

We proved that this combinatorial structure sometimes appear in infinite words, and sometimes not. Moreover, some words contain both abelian powers and anti-powers.

In the future, it would be nice to extend the non-abelian theorem of unavoidable regularity in the abelian setting. Computer experimentations gave us the belief that it is still true.

Thank you

