On closed and open factors in Arnoux-Rauzy words

Olga Parshina ${ }^{1,2} \quad$ Luca Zamboni ${ }^{1}$

${ }^{1}$ Institut Camille Jordan UCBL1, Lyon, France
${ }^{2}$ Sobolev Institute of mathematics SB RAS, Novosibirsk, Russia

17th Mons theoretical computer science days
10-14 September, 2018

Notation

- A finite alphabet A is a finite set of symbols
- A finite word over A is a sequence $u=u_{0} u_{1} \cdots u_{n-1}, u_{i} \in A, n \geq 0$
- The length of the word u is $|u|=n$
- $u=$ prefixfactorsuffix, $n=24$
- The empty word is denoted by $\varepsilon,|\varepsilon|=0$
- An infinite word over A is a sequence $x=x_{0} x_{1} x_{2} \cdots, x_{i} \in A$

Special factors

Let A be a finite alphabet, and v be a word over A
The factor u of v is

- right special, if $u a$ and $u b$ are factors of v for $a, b \in A, a \neq b$
- left special, if $a u$ and $b u$ are factors of v for $a, b \in A, a \neq b$
- bispecial, if it is both right and left special

Example: $v=$ independent
$n d$ is a left special factor of v $d e$ is a right special factor of v $e n$ is a bispecial factor of v

Special factors

Let A be a finite alphabet, and v be a word over A
The factor u of v is

- right special, if $u a$ and $u b$ are factors of v for $a, b \in A, a \neq b$
- left special, if $a u$ and $b u$ are factors of v for $a, b \in A, a \neq b$
- bispecial, if it is both right and left special

Example: $v=$ independent
$n d$ is a left special factor of v $d e$ is a right special factor of v $e n$ is a bispecial factor of v

Special factors

Let A be a finite alphabet, and v be a word over A
The factor u of v is

- right special, if $u a$ and $u b$ are factors of v for $a, b \in A, a \neq b$
- left special, if $a u$ and $b u$ are factors of v for $a, b \in A, a \neq b$
- bispecial, if it is both right and left special

Example: $v=$ independent
$n d$ is a left special factor of v $d e$ is a right special factor of v $e n$ is a bispecial factor of v

Special factors

Let A be a finite alphabet, and v be a word over A
The factor u of v is

- right special, if $u a$ and $u b$ are factors of v for $a, b \in A, a \neq b$
- left special, if $a u$ and $b u$ are factors of v for $a, b \in A, a \neq b$
- bispecial, if it is both right and left special

Example: $v=$ independent
$n d$ is a left special factor of v $d e$ is a right special factor of v $e n$ is a bispecial factor of v

Arnoux-Rauzy words *

Consider an alphabet $A_{t}=\{0,1, \ldots, t-1\}, t \geq 2$.

- A sequence $x \in A_{t}^{\omega}$ is an Arnoux-Rauzy word, if for all $n \in \mathbb{N}$ it has $f_{x}(n)=(t-1) n+1$ factors of length n, with exactly one right special factor and one left special factor of length n
- In case $t=2$ the word x is Sturmian

Example

Tribonacci word $x=010201001020101020100102010 \cdots$

- $f_{x}(1)=3$, bispecial factor of length 1 is $\mathbf{0}$
- $f_{x}(2)=5, \mathbf{1 0}$ is right special, $\mathbf{0 1}$ is left special

Open and closed words^

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v : $v=$ ahaha is a bordered word with borders a and aha
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is of length ≤ 1 or it has a frontier, otherwise v is open
$v=$ local is closed, I is a frontier of v
$v=$ maximum is open, m is a border of v
$v=$ value is unbordered and open

Fici, G.: A Classification of Trapezoidal Words. In: WORDS 2011, 8th International Conference on Words.
No. 63 in Electronic Proceedings in Theoretical Computer Science (2011), pp. 1297437 Mons theoretical compu

Open and closed words^

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v : $v=$ ahaha is a bordered word with borders a and aha
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is of length ≤ 1 or it has a frontier, otherwise v is open
$v=$ local is closed, I is a frontier of v
$v=$ maximum is open, m is a border of v
$v=$ value is unbordered and open

Fici, G.: A Classification of Trapezoidal Words. In: WORDS 2011, 8th International Conference on Words.
No. 63 in Electronic Proceedings in Theoretical Computer Science (2011), pp. 1297437 Mons theoretical compu

Open and closed words^

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v : $v=$ ahaha is a bordered word with borders a and aha
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is of length ≤ 1 or it has a frontier, otherwise v is open
$v=$ local is closed, I is a frontier of v
$v=$ maximum is open, m is a border of v
$v=$ value is unbordered and open

Fici, G.: A Classification of Trapezoidal Words. In: WORDS 2011, 8th International Conference on Words.
No. 63 in Electronic Proceedings in Theoretical Computer Science (2011), pp. 1297437 Mons theoretical compu

Open and closed words^

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v : $v=$ ahaha is a bordered word with borders a and aha
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is of length ≤ 1 or it has a frontier, otherwise v is open
$v=$ local is closed, I is a frontier of v
$v=$ maximum is open, m is a border of v
$v=$ value is unbordered and open

Fici, G.: A Classification of Trapezoidal Words. In: WORDS 2011, 8th International Conference on Words.
No. 63 in Electronic Proceedings in Theoretical Computer Science (2011), pp. 1297437 Mons theoretical compu

Open and closed words

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is a letter or it has a frontier, otherwise v is open

Closed words are also known as periodic-like words ${ }^{\star}$

- A finite word v is called periodic-like if its longest repeated prefix is not a right-special factor of v
* A.Carpi, A.de Luca: Periodic-like words, periodicity and boxes.

Open and closed words

Let A be a finite alphabet, and v be a finite word over A

- The word v has a border, if it has a proper factor occurring both as a prefix and as a suffix of v
- A frontier of v is a border having no internal occurrences in v
- A word v is closed if it is a letter or it has a frontier, otherwise v is open

Closed words are also known as complete first returns

- A finite word v is a complete first return to a word u if it has exactly two occurrences of u, one as a prefix and one as a suffix

Complexity functions

Let $t \geq 2$ and $x \in A_{t}^{\omega}$ be an Arnoux-Rauzy word, $n \geq 0$

- The function $f_{x}(n)$ counts the number of factors of length n in x
- $f_{x}(n)=(t-1) n+1$
- The function $f_{x}^{c}(n)$ counts the number of closed factors of length n in x
- The function $f_{x}^{\circ}(n)$ counts the number of open factors of length n in x
- $f_{x}^{c}(n)+f_{x}^{O}(n)=f_{x}(n)$

Aim: To study the function $f_{x}^{c}(n)$

Periods of finite Arnoux-Rauzy factors

A period of the word u is a positive integer p,

$$
\text { such that } u_{i}=u_{i+p} \text { for } i=0,1, \cdots|u|-p .
$$

Theorem [N.J.Fine, H.S.Wilf (1965)]

If a word u has periods p and q, and has length at least $p+q-\operatorname{gcd}(p, q)$, then u has also period $\operatorname{gcd}(p, q)$.
[A. de Luca, F.Mignosi (1994)]
If u is a bispecial factor of a Sturmian word, then u has two coprime periods p and q, s.t. $|u|=p+q-2$.
[J.Justin (2000)]
If u is a bispecial factor of an Arnoux-Rauzy word over $A_{t}, t \geq 2$, then u has t coprime periods $p_{0}, p_{1}, \ldots, p_{t-1}$, such that

$$
|u|=\frac{p_{0}+p_{1}+\cdots+p_{t-1}-t}{t-1} .
$$

Periods of finite Arnoux-Rauzy factors

[J.Justin (2000)]

If u is a bispecial factor of an Arnoux-Rauzy word over $A_{t}, t \geq 2$, then u has t coprime periods $p_{0}, p_{1}, \ldots, p_{t-1}$, such that $|u|=\frac{\sum_{i=0}^{t-1} p_{i}-t}{t-1}$. Let us call $p_{0}, p_{1}, \ldots, p_{t-1}$ critical periods of u.

Lemma 1

Let $B=\left\{B_{k}\right\}_{k=0}^{\infty}$ be the sequence of bispecial factors of an Arnoux-Rauzy word $x \in A_{t}^{\omega}$, enumerated by increasing of length; the word x^{\prime} be the unique accumulation point of B, and let $p_{0}^{k}, p_{1}^{k}, \ldots, p_{t-1}^{k}$ be crirical periods of B_{k}. Then:

- For $B_{0}=\varepsilon, p_{i}^{0}=1$ for every i;
- If $B_{k} s$ is a prefix of x^{\prime} for $k \geq 0, s \in A_{t}$, then $p_{s}^{k+1}=p_{s}^{k}$, and $p_{r}^{k+1}=p_{r}^{k}+p_{s}^{k}$ for $r \in A \backslash\{s\}$.

The main formula

- Arnoux-Rauzy word x over A_{t}
- Set of bispecial factors of x is $\left\{\mathbf{B}_{\mathbf{i}}\right\}_{\mathbf{i}=\mathbf{0}}^{\infty}$, the length of B_{i} is $\mathbf{b}_{\mathbf{i}}$
- The set of critical periods of B_{i} is $\left\{\mathbf{p}_{\mathbf{0}}^{\mathbf{i}}, \mathbf{p}_{\mathbf{1}}^{\mathbf{i}}, \ldots, \mathbf{p}_{\mathbf{t}-\mathbf{1}}^{\mathbf{i}}\right\}$
- Take $k \in \omega$ and $a \in A_{t}$
- The minimal among critical periods of B_{k} is $\mathbf{p}_{\mathbf{k}}$
- Set the interval $I_{k, a}=\left[b_{k}-2 p_{k}+p_{a}^{k}+2, b_{k}+p_{a}^{k}\right]$
- The minimal distance from $n \in I_{k, a}$ to the endpoints of $I_{k, a}$ is $\mathbf{d}\left(\mathbf{n}, \mathbf{I}_{\mathbf{k}, \mathbf{a}}\right)$
- The function counting the number of closed factors of length n in x is $\mathbf{f}_{x}^{c}(\mathbf{n})$

The following holds:

$$
f_{x}^{c}(n)=\sum_{a \in A_{t}} \sum_{\substack{k \in \omega \\ n \in I_{k, a}}}\left(d\left(n, I_{k, a}\right)+1\right)
$$

Fibonacci word

Tribonacci word

Sturmian word $x_{r}=0001000010000100001000010000100010000 \cdots$

17th Mons theoretical compu

Lemma 2
Let x be an Arnoux-Rauzy word. Then
$\liminf _{n \rightarrow \infty} f_{x}^{c}(n)=+\infty$

Lemma 2
Let x be an Arnoux-Rauzy word. Then

$$
\liminf _{n->\infty} f_{x}^{c}(n)=+\infty
$$

Lemma 3

Consider the morphism ϕ over the alphabet A_{4}, such that $\phi(0)=02, \phi(1)=03, \phi(2)=12, \phi(3)=14$.
Let y be a fixed point of ϕ begining with letter 0 . Then

$$
\liminf _{n \rightarrow>\infty} f_{y}^{c}(n)=0
$$

$y=021203120213031202120313021303120212031202 \cdots$

Thank you for your attention!

