Return words and derivated sequences to Rote sequences

Kateřina Medková, Edita Pelantová and Laurent Vuillon

September 13, 2018

Return words and derivated sequences (Durand 1998)

A return word to a prefix w in \mathbf{u} is the word $u_{i} u_{i+1} \cdots u_{j-1}$ for every two consecutive occurrences $i<j$ of w in \mathbf{u}.

Let r_{0}, \ldots, r_{k-1} be return words to w in \mathbf{u}. Then $\mathbf{u}=r_{s_{0}} r_{s_{1}} r_{s_{2}} \cdots$. The sequence $\mathbf{d}_{\mathbf{u}}(w)=s_{0} s_{1} s_{2} \cdots$ is the derivated sequence of \mathbf{u} to w.

Complementary symmetric Rote sequences (Rote 1994)

A sequence \mathbf{v} is a Rote sequence if $\mathcal{C}_{\mathbf{v}}(n)=2 n$ for all $n \in \mathbb{N}$.
A sequence is complementary symmetric (CS) if its language is closed under the exchange of letters $0 \leftrightarrow 1$.

Example: v $=001110011100011000110001110011 \ldots$ has factors: $0,1,00,01,10,11,000,001,011,100,110,111, \ldots$

Complementary symmetric Rote sequences (Rote 1994)

A sequence \mathbf{v} is a Rote sequence if $\mathcal{C}_{\mathbf{v}}(n)=2 n$ for all $n \in \mathbb{N}$.
A sequence is complementary symmetric (CS) if its language is closed under the exchange of letters $0 \leftrightarrow 1$.

Example: v $=001110011100011000110001110011 \ldots$ has factors: $0,1,00,01,10,11,000,001,011,100,110,111, \ldots$

CS Rote sequences are neutral with characteristic 0 :

- neutral: every non-empty factor w has its bilateral order $m_{\mathbf{v}}(w)=0$;
- characteristic of $\mathbf{v}=1-m_{\mathbf{v}}(\varepsilon)$.

Complementary symmetric Rote sequences (Rote 1994)

A sequence \mathbf{v} is a Rote sequence if $\mathcal{C}_{\mathbf{v}}(n)=2 n$ for all $n \in \mathbb{N}$.
A sequence is complementary symmetric (CS) if its language is closed under the exchange of letters $0 \leftrightarrow 1$.

Example: v $=001110011100011000110001110011 \cdots$ has factors: $0,1,00,01,10,11,000,001,011,100,110,111, \ldots$

CS Rote sequences are neutral with characteristic 0 :

- neutral: every non-empty factor w has its bilateral order $m_{\mathbf{v}}(w)=0$;
- characteristic of $\mathbf{v}=1-m_{\mathbf{v}}(\varepsilon)$.

Return words to CS Rote sequences

Theorem

Every non-empty prefix x of a CS Rote sequence \mathbf{v} has exactly three return words.

It is a direct consequence of

- Balková, Pelantová, Steiner 2008
- Dolce, Perrin 2017

Return words to CS Rote sequences

Theorem

Every non-empty prefix x of a CS Rote sequence \mathbf{v} has exactly three return words.

It is a direct consequence of

- Balková, Pelantová, Steiner 2008
- Dolce, Perrin 2017

To study derivated sequences we need to know also the structure of return words, not only their number.

Complementary symmetric Rote sequences

Sequence \mathbf{v} is CS Rote sequence if $\mathcal{C}_{\mathbf{v}}(n)=2 n$ and its language is closed under the exchange of letters $0 \leftrightarrow 1$.

Theorem (Rote 1994)

A sequence $\mathbf{v}=v_{0} v_{1} v_{2} \cdots$ is a CS Rote sequence if and only if its difference sequence $\mathbf{u}=u_{0} u_{1} u_{2} \cdots$ which is defined by

$$
u_{i}=v_{i+1}-v_{i}=v_{i+1}+v_{i} \quad \bmod 2
$$

is a Sturmian sequence. We denote $\mathcal{S}(\mathbf{v})=\mathbf{u}$.
$\left.\begin{array}{l}\text { Rote: } \quad \mathbf{v}_{F}=0011100111000110001100011 \cdots \\ \text { Sturmian: } \mathbf{u}_{F}=010010100100101001010010 \cdots\end{array}\right\} \mathcal{S}\left(\mathbf{v}_{F}\right)=\mathbf{u}_{F}$

Complementary symmetric Rote sequences

Sequence \mathbf{v} is CS Rote sequence if $\mathcal{C}_{\mathbf{v}}(n)=2 n$ and its language is closed under the exchange of letters $0 \leftrightarrow 1$.

Theorem (Rote 1994)

A sequence $\mathbf{v}=v_{0} v_{1} v_{2} \cdots$ is a CS Rote sequence if and only if its difference sequence $\mathbf{u}=u_{0} u_{1} u_{2} \cdots$ which is defined by

$$
u_{i}=v_{i+1}-v_{i}=v_{i+1}+v_{i} \quad \bmod 2
$$

is a Sturmian sequence. We denote $\mathcal{S}(\mathbf{v})=\mathbf{u}$.
$\left.\begin{array}{l}\text { Rote: } \quad \mathbf{v}_{F}=0011100111000110001100011 \cdots \\ \text { Sturmian: } \mathbf{u}_{F}=010010100100101001010010 \cdots\end{array}\right\} \mathcal{S}\left(\mathbf{v}_{F}\right)=\mathbf{u}_{F}$
$\mathcal{S}(00)=\mathcal{S}(11)=0 \quad \mathcal{S}(001)=01 \quad \mathcal{S}(001110)=01001$

Complementary symmetric Rote sequences

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \ldots$
Rote: $\mathbf{v}_{F}=110001100011100111001110001100 \cdots$

Return words to CS Rote sequences

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $v_{F}=001110011100011000110001110011 \ldots$

Return words to CS Rote sequences

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $v_{F}=001110011100011000110001110011 \ldots$

$$
0=\mathcal{S}(00)=\mathcal{S}(11)
$$

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \ldots$

Return words to CS Rote sequences

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \cdots$

$$
0=\mathcal{S}(00)=\mathcal{S}(11)
$$

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \ldots$

We have to decide when 00 and 11 appear.

Return words to CS Rote sequences

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$
Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \cdots$

$$
0=\mathcal{S}(00)=\mathcal{S}(11)
$$

Sturmian: $\mathbf{u}_{F}=01001010010010100101001001010 \cdots$ Rote: $\mathbf{v}_{F}=001110011100011000110001110011 \cdots$

We have to decide when 00 and 11 appear.
Strumian: $\mathbf{u}_{F}=01|0| 01|01| 0|01| 0|01| 01|0| 01|01| 0|01| 0|01| 01 \mid 0 \cdots$ Rote: $\mathbf{v}_{F}=00111|00111| 0|0011| 0|0011| 0|00111| 0011 \cdots$

Return words to CS Rote sequences

Lemma

Let x be a prefix of \mathbf{v}. A number i is an occurrence of x in \mathbf{v} if and only if i is an occurrence of $\mathcal{S}(x)$ in $\mathbf{u}=\mathcal{S}(\mathbf{v})$ and the number of 1 's in the prefix $\mathbf{u}_{[0, i-1)}$ is even.

Return words to CS Rote sequences

Lemma

Let x be a prefix of \mathbf{v}. A number i is an occurrence of x in \mathbf{v} if and only if i is an occurrence of $\mathcal{S}(x)$ in $\mathbf{u}=\mathcal{S}(\mathbf{v})$ and the number of 1 's in the prefix $\mathbf{u}_{[0, i-1)}$ is even.

A word $u=u_{0} u_{1} \cdots u_{n-1}$ is called stable (S) if $|u|_{1}=0 \bmod 2$, where $|u|_{1}$ denotes the number of occurrences of the letter 1 in u. Otherwise, u is unstable (U).

Return words to CS Rote sequences

Let w be a prefix of a standard Sturmian sequence \mathbf{u} with return words r, s and let \mathbf{u} be a concatenation of blocks $r^{k} s$ and $r^{k+1} s$. We distinguish:
i) w is of type $S U(k)$ if r is stable and s is unstable;
ii) w is of type $U S(k)$ if r is unstable and s is stable;
iii) w is of type $U U(k)$ if both r and s are unstable.

Return words to CS Rote sequences

Let w be a prefix of a standard Sturmian sequence \mathbf{u} with return words r, s and let \mathbf{u} be a concatenation of blocks $r^{k} s$ and $r^{k+1} s$. We distinguish:
i) w is of type $S U(k)$ if r is stable and s is unstable;
ii) w is of type $U S(k)$ if r is unstable and s is stable;
iii) w is of type $U U(k)$ if both r and s are unstable.

Theorem

Let \mathbf{v} be a CS Rote sequence with a prefix x and let $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be its Sturmian sequence with the prefix $w=\mathcal{S}(x)$ and its return words r, s. Then the return words A, B, C to x satisfy
i) if w is $S U(k)$:

$$
r=\mathcal{S}(A 0), s r^{k+1} s=\mathcal{S}(B 0), s r^{k} s=\mathcal{S}(C 0)
$$

ii) if w is $U S(k)$: $\quad r r=\mathcal{S}(A 0), r s r=\mathcal{S}(B 0), s=\mathcal{S}(C 0)$;
iii) if w is $U U(k)$: $\quad r r=\mathcal{S}(A 0), r s=\mathcal{S}(B 0)$, $s r=\mathcal{S}(C 0)$.

Derivated sequences to CS Rote sequences

Corollary

Let \mathbf{v} be a CS Rote sequence with a non-empty prefix $x, \mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then the derivated sequence $\mathbf{d}_{\mathbf{v}}(x)$ is uniquely determined by
i) $\mathbf{d}_{\mathbf{u}}(w)$ to the prefix $w=\mathcal{S}(x)$ in \mathbf{u} and
ii) the type of w.

Derivated sequences to CS Rote sequences

Corollary

Let \mathbf{v} be a CS Rote sequence with a non-empty prefix $x, \mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then the derivated sequence $\mathbf{d}_{\mathbf{v}}(x)$ is uniquely determined by
i) $\mathbf{d}_{\mathbf{u}}(w)$ to the prefix $w=\mathcal{S}(x)$ in \mathbf{u} and
ii) the type of w.
i) the derivated sequences of Sturmian sequences are known

Derivated sequences to CS Rote sequences

Corollary

Let \mathbf{v} be a CS Rote sequence with a non-empty prefix $x, \mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then the derivated sequence $\mathbf{d}_{\mathbf{v}}(x)$ is uniquely determined by
i) $\mathbf{d}_{\mathbf{u}}(w)$ to the prefix $w=\mathcal{S}(x)$ in \mathbf{u} and
ii) the type of w.
i) the derivated sequences of Sturmian sequences are known
ii) the types are determined by S-adic representations of Sturmian sequences

Derivated sequences to CS Rote sequences

Proposition

Let \mathbf{v} be a CS Rote seq., $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian seq. Let x be a non-empty prefix of \mathbf{v} and $w=\mathcal{S}(x)$. Let $\alpha>\frac{1}{2}$ be the slope of $\mathbf{d}_{\mathbf{u}}(w)$. Then $\mathbf{d}_{\mathbf{v}}(x)$ is a coding of 3iet transformation given by lengths $\beta, \gamma, 1-\beta-\gamma$ and by permutation π, where
i) if w is $S U(k), \quad \beta=\alpha, \gamma=\alpha-k(1-\alpha) \quad$ and $\quad \pi=(3,2,1)$;
ii) if w is $U S(k), \quad \beta=2 \alpha-1, \gamma=1-\alpha \quad$ and $\quad \pi=(3,2,1)$;
iii) if w is $U U(k), \quad \beta=2 \alpha-1, \gamma=1-\alpha \quad$ and $\quad \pi=(2,3,1)$.

Primitive substitutive CS Rote sequences

A sequence \mathbf{v} is primitive substitutive if $\mathbf{v}=\theta(\mathbf{w})$, where \mathbf{w} is a fixed point of a primitive substitution and θ is a morphism.

Primitive substitutive CS Rote sequences

A sequence \mathbf{v} is primitive substitutive if $\mathbf{v}=\theta(\mathbf{w})$, where \mathbf{w} is a fixed point of a primitive substitution and θ is a morphism.

Theorem (Durand 1998)

A sequence is substitutive primitive if and only if it has finitely many derivated sequences.

Primitive substitutive CS Rote sequences

A sequence \mathbf{v} is primitive substitutive if $\mathbf{v}=\theta(\mathbf{w})$, where \mathbf{w} is a fixed point of a primitive substitution and θ is a morphism.

Theorem (Durand 1998)

A sequence is substitutive primitive if and only if it has finitely many derivated sequences.

Theorem

Let \mathbf{v} be a CS Rote sequence, $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then \mathbf{v} is primitive substitutive if and only if \mathbf{u} is primitive substitutive.

Primitive substitutive CS Rote sequences

A sequence \mathbf{v} is primitive substitutive if $\mathbf{v}=\theta(\mathbf{w})$, where \mathbf{w} is a fixed point of a primitive substitution and θ is a morphism.

Theorem (Durand 1998)

A sequence is substitutive primitive if and only if it has finitely many derivated sequences.

Theorem

Let \mathbf{v} be a CS Rote sequence, $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then \mathbf{v} is primitive substitutive if and only if \mathbf{u} is primitive substitutive.

Proposition

Let \mathbf{v} be a CS Rote sequence, $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian sequence. Then \mathbf{v} is not a fixed point of primitive morphism.

Derivated sequences to CS Rote sequences

Corollary

Let \mathbf{v} be a CS Rote seq. and let $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian seq. which is a fixed point of a primitive morphism. If \mathbf{u} has K derivated sequences, then \mathbf{v} has at most $3 K$ derivated sequences and each of them is fixed by a primitive morphism.

Derivated sequences to CS Rote sequences

Corollary

Let \mathbf{v} be a CS Rote seq. and let $\mathbf{u}=\mathcal{S}(\mathbf{v})$ be a standard Sturmian seq. which is a fixed point of a primitive morphism. If \mathbf{u} has K derivated sequences, then \mathbf{v} has at most $3 K$ derivated sequences and each of them is fixed by a primitive morphism.
\mathbf{v}_{F} has three derivated seq. fixed by the morphisms:
$\sigma_{0}:\left\{\begin{array}{l}A \rightarrow A B \\ B \rightarrow A B A A C A A C A \\ C \rightarrow A B A A C A\end{array} \quad \sigma_{1}:\left\{\begin{array}{l}A \rightarrow B B C A C \\ B \rightarrow B B C A C A C \\ C \rightarrow B\end{array} \quad \sigma_{2}:\left\{\begin{array}{l}A \rightarrow B A C C B \\ B \rightarrow B A C C \\ C \rightarrow B A C B\end{array}\right.\right.\right.$

Derivated sequences to CS Rote sequences

\mathbf{u} is a fixed point of $0 \rightarrow 101,1 \rightarrow 10$
the associated Rote seq. v has two derivated seq. fixed by:

$$
\sigma_{0}:\left\{\begin{array}{l}
A \rightarrow A B C B \\
B \rightarrow A \\
C \rightarrow A B
\end{array} \quad \sigma_{1}:\left\{\begin{array}{l}
A \rightarrow A B C \\
B \rightarrow A C \\
C \rightarrow A B
\end{array}\right.\right.
$$

Comments

- We focused on standard Sturmian sequences.
- CS Rote sequences are neutral sequences of characteristics 0 , but they are not dendric.
- The derivated sequences of CS Rote sequences are 3iet sequences and so they are dendric.
- A CS Rote sequence is primitive substitutive if and only if its associated Sturmian sequence is primitive substitutive.
- We can list the morphisms which fix the derivated sequences of a given CS Rote sequence if its associated Sturmian sequence is a fixed point.

Thank you for your attention!

