Avoiding additive powers - Algorithmic proofs

Florian Lietard

Supervisors: Damien Jamet (LORIA) and Thomas Stoll (IECL)
An infinite word $w = 3141042103034243233412143213214 \cdots$
An infinite word \(w = 3141042103034243233412143213214 \cdots \)

\(w \) contains a **(pure) square**: same blocks

\[w = 3141042103034243233412143213214 \cdot 321 \cdot 321 \cdot 4 \cdots \]
An infinite word \(w = 3141042103034243233412143213214 \cdots \)

\(w \) contains a (pure) square: same blocks

\[w = 314104210303424323341214 \cdot 321 \cdot 321 \cdot 4 \cdots \]

\(w \) contains an abelian square: same blocks up to a permutation

\[w = 31410421030 \cdot 342 \cdot 432 \cdot 33412143213214 \cdots \]
An infinite word $w = 3141042103034243233412143213214 \cdots$

- w contains a (pure) square: same blocks

 $w = 314104210303424323341214 \cdot 321 \cdot 321 \cdot 4 \cdots$

- w contains an abelian square: same blocks up to a permutation

 $w = 31410421030 \cdot 342 \cdot 432 \cdot 33412143213214 \cdots$

- w contains an additive square: same size and same sum

 $w = 31 \cdot \underbrace{410421 \cdot 030342}_{\Sigma=12} \cdot 43233412143213214 \cdots$
An infinite word $w = 3141042103034243233412143213214 \cdots$

w contains a **(pure) square** : same blocks

$$w = 314104210303424323341214 \cdot 321 \cdot 321 \cdot 4 \cdots$$

w contains an **abelian square** : same blocks up to a permutation

$$w = 31410421030 \cdot 342 \cdot 432 \cdot 33412143213214 \cdots$$

w contains an **additive square** : same size and same sum

$$w = 31 \cdot 410421 \cdot 030342 \cdot 43233412143213214 \cdots$$

$\Sigma = 12$ $\Sigma = 12$

These notions can naturally be extended to higher powers, such as cubes ...
Avoidability

Objective
Construct infinite words over finite alphabets avoiding such patterns
Avoidability

Objective

Construct infinite words over finite alphabets avoiding such patterns

All words of size ≥ 4 over $\{0, 1\}$ contain squares
Objective

Construct infinite words over finite alphabets avoiding such patterns

All words of size ≥ 4 over $\{0, 1\}$ contain squares

But it is possible over $\{0, 1, 2\}$ (A. Thue, 1912)
Uniformly k-repetitive semigroups

A semigroup S is uniformly-k-repetitive if for all morphisms $\varphi : \Sigma^+ \to S$ and for all words $w \in \Sigma^+$ long enough, there exists a factor $w_1 \cdots w_k$ in w such that

$$\varphi(w_1) = \cdots = \varphi(w_k) \text{ and } |w_1| = \cdots = |w_k|$$
Uniformly k-repetitive semigroups

A semigroup S is uniformly-k-repetitive if for all morphisms $\varphi : \Sigma^+ \rightarrow S$ and for all words $w \in \Sigma^+$ long enough, there exists a factor $w_1 \cdots w_k$ in w such that

$$\varphi(w_1) = \cdots = \varphi(w_k) \text{ and } |w_1| = \cdots = |w_k|$$

Question of Pirillo and Varricchio (1994)

Is \mathbb{N}^+ uniformly k-repetitive for $k \geq 2$?
Uniformly k-repetitive semigroups

A semigroup S is uniformly-k-repetitive if for all morphisms $\varphi : \Sigma^+ \rightarrow S$ and for all words $w \in \Sigma^+$ long enough, there exists a factor $w_1 \cdots w_k$ in w such that

$$\varphi(w_1) = \cdots = \varphi(w_k) \text{ and } |w_1| = \cdots = |w_k|$$

Question of Pirillo and Varricchio (1994)

Is \mathbb{N}^+ uniformly k-repetitive for $k \geq 2$?

Partial answer (J. Cassaigne et al.)

\mathbb{N}^+ is not uniformly 3-repetitive

- J. Justin, 1972
 Généralisation du théorème de Van der Waerden sur les semi-groupes répétitifs,

- G. Pirillo, S. Varricchio, 1994
 On uniformly repetitive semigroups,
State of the art

Problem: Find an infinite word avoiding pure/abelian/additive powers

<table>
<thead>
<tr>
<th></th>
<th>Pure</th>
<th>Abelian</th>
<th>Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubes</td>
<td>2 letters 1906</td>
<td>3 letters 1979</td>
<td>4 letters 2014</td>
</tr>
<tr>
<td>squares</td>
<td>3 letters 1912</td>
<td>4 letters 1992</td>
<td>?</td>
</tr>
</tbody>
</table>

1906 - A. Thue
Über unendliche Zeichenreihen,
Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, 1-22, 1906

1912 - A. Thue
Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, 1-67, 1912

1979 - F.M. Dekking
Strongly non-repetitive sequences and progression-free sets,
In Journal of Combinatorial Theory, Series A, Volume 27, 181-185, 1979

1992 - V. Keränen
Abelian squares are avoidable on 4 letters,
In Automata, Languages and Programming, July 13 – 17, 41-52, 1992

2014 - J. Cassaigne, J. D. Currie, L. Schaeffer, J. Shallit
Avoiding Three Consecutive Blocks of the Same Size and Same Sum,
In Journal of the ACM, Volume 61, issue no.2, April 2014

2015 - M. Rao
On some generalizations of abelian power avoidability,
In Theoretical Computer Science, (601) 39-46, 2015
A 4-letter morphism avoiding additive cubes [J. Cassaigne et al. 2014]

\[\varphi_0 : 0 \mapsto 03, \quad 1 \mapsto 43, \quad 3 \mapsto 1, \quad 4 \mapsto 01 \]

\[\varphi_0^\infty (0) = 0314301103434303101101103143034343034303430314301 \cdots \]

Avoiding Three Consecutive Blocks of the Same Size and Same Sum,
In *Journal of the ACM*, Volume 61, issue no.2, April 2014

It is possible to avoid additive cubes over a 4-letter alphabet with a morphism of size 2
State of the art

A 4-letter morphism avoiding additive cubes [J. Cassaigne et al. 2014]

\[\varphi_0 : 0 \mapsto 03, \quad 1 \mapsto 43, \quad 3 \mapsto 1, \quad 4 \mapsto 01 \]

\[\varphi_0^\infty(0) = 03143011034343031011011031430343430343430314301 \ldots \]

Avoiding Three Consecutive Blocks of the Same Size and Same Sum,
In *Journal of the ACM*, Volume 61, issue no.2, April 2014

It is possible to avoid additive cubes over a 4-letter alphabet with a morphism of size 2
State of the art

A 4-letter morphism avoiding additive cubes [J. Cassaigne et al. 2014]

\[\varphi_0 : 0 \mapsto 03, \quad 1 \mapsto 43, \quad 3 \mapsto 1, \quad 4 \mapsto 01 \]

\[\varphi_0^\infty (0) = 03143011034343031011011031430343430343430314301 \cdots \]

Avoiding Three Consecutive Blocks of the Same Size and Same Sum,
In Journal of the ACM, Volume 61, issue no.2, April 2014

It is possible to avoid additive cubes over a 4-letter alphabet with a morphism of size 2
A 4-letter morphism avoiding additive cubes [J. Cassaigne et al. 2014]

\[\phi_0 : 0 \mapsto 03, \quad 1 \mapsto 43, \quad 3 \mapsto 1, \quad 4 \mapsto 01 \]

\[\phi_0^\infty (0) = 03143011034343031011011031430343430343430343430314301 \cdots \]

It is possible to avoid additive **cubes** over a 4-letter **alphabet** with a morphism of size 2
Do there exist:
- many 4-letter morphisms avoiding additive cubes?
- morphic words without additive cubes but with non-abelian additive squares?

\[
\begin{array}{|c|c|c|c|}
\hline
 & \text{Pure} & \text{Abelian} & \text{Additive} \\
\hline
\text{cubes} & 2 \text{ letters} & 3 \text{ letters} & 4 \text{ letters} \\
 & 1906 & 1979 & 2014 \\
\hline
\text{squares} & 3 \text{ letters} & 4 \text{ letters} & ? \\
 & 1912 & 1992 & \\
\hline
\end{array}
\]
Our approach

- Want to find other morphic words on other alphabets
- Compute to get some intuition
- In w_0 all additive squares are abelian squares: sufficient to show that w_0 avoids abelian cubes
Our approach
- Want to find other morphic words on other alphabets
- Compute to get some intuition
- In w_0 all additive squares are abelian squares: sufficient to show that w_0 avoids abelian cubes

Our experimental results
- We find 5% of morphic words with additive and non-abelian squares
- All morphisms are similar to φ_0
Apply it to other morphisms

The corresponding incidence matrix:

\[\text{Mat}(\varphi_0) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \]
Apply it to other morphisms

\[\varphi_0(0) = 03 \quad \varphi_0(1) = 43 \]
\[\varphi_0(3) = 1 \quad \varphi_0(4) = 01 \]

The corresponding incidence matrix:

\[
\text{Mat}(\varphi_0) = \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

\[\varphi(6) = 60 \quad \varphi(2) = 10 \]
\[\varphi(0) = 2 \quad \varphi(1) = 62 \]

\[\mathbf{w} = \lim_{n \to \infty} \varphi^n(6) = 602106226010106026226226021060101060101 \cdots \]
Apply previous proof to other morphisms

Lemma
If a morphism is similar to \(\varphi_0 \), then it fits the informatic proof developed by Cassaigne et al. in 2014.

Theorem (Jamet, L., Stoll)
Let \(w \) be a fixed point of a morphism similar to \(\varphi_0 \). The following propositions are decidable:

- \(w \) avoids additive cubes
- In \(w \), all additive squares are abelian squares
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]

- \(\varphi^1(6) = 60 \)
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]

- \(\varphi^1(6) = 60 \)
- \(\varphi^2(6) = 602 \)
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]

- \(\varphi^1(6) = 60\)
- \(\varphi^2(6) = 602\)
- \(\varphi^3(6) = 60210\)
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]

- \(\varphi^1(6) = 60 \)
- \(\varphi^2(6) = 602 \)
- \(\varphi^3(6) = 60210 \)
- \(\varphi^4(6) = 60210622 \)
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60
\end{align*}
\]

- \(\varphi^1(6) = 60\)
- \(\varphi^2(6) = 602\)
- \(\varphi^3(6) = 60210\)
- \(\varphi^4(6) = 60210622\)
- \(\varphi^5(6) = 60210622601010\)
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) & = 2 \\
\varphi(1) & = 62 \\
\varphi(2) & = 10 \\
\varphi(6) & = 60 \\
\end{align*}
\]

\[
\begin{itemize}
 \item \varphi^1(6) = 60
 \item \varphi^2(6) = 602
 \item \varphi^3(6) = 60210
 \item \varphi^4(6) = 60210622
 \item \varphi^5(6) = 60210622601010
\end{itemize}
\]
Why do we choose morphic words?

\[
\begin{align*}
\varphi(0) &= 2 \\
\varphi(1) &= 62 \\
\varphi(2) &= 10 \\
\varphi(6) &= 60 \\
\end{align*}
\]

- \(\varphi^1(6) = 60\)
- \(\varphi^2(6) = 602\)
- \(\varphi^3(6) = 60210\)
- \(\varphi^4(6) = 60210622\)
- \(\varphi^5(6) = 60210622601010\)

\[w = 602106226010106026226226021060101060101\]

<table>
<thead>
<tr>
<th>(w[p])</th>
<th>6</th>
<th>0</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>6</th>
<th>2</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>(\text{par}(p))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Parikh vector

The Parikh vector $\psi(x)$ of a word x is:

$$\psi(x) = \begin{pmatrix} |x|_0 \\ |x|_1 \\ |x|_2 \\ |x|_6 \end{pmatrix}$$

example: $\psi(60210) = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
Where the alphabet matters

Parikh vector

The Parikh vector $\psi(x)$ of a word x is:

$$\psi(x) = \begin{pmatrix} |x|_0 \\ |x|_1 \\ |x|_2 \\ |x|_6 \end{pmatrix}, \text{ example: } \psi(60210) = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

If b and c are two blocks with same length and same sum then the vector $v = \psi(b) - \psi(c)$ belongs to the lattice

$$\mathcal{L} := \{v \in \mathbb{Z}^4 : (1, 1, 1, 1) \cdot v = 0 \text{ et } (0, 1, 2, 6) \cdot v = 0\}.$$

which depends on the chosen alphabet.
Linear algebra

Let p be a position, we define

$$\sigma(p) = \psi(w[0, p]) = \begin{pmatrix} |w[0, p]|_0 \\ |w[0, p]|_1 \\ |w[0, p]|_2 \\ |w[0, p]|_6 \end{pmatrix}, \text{ example: } \sigma(9) = \psi(602106226) = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 3 \end{pmatrix}$$
Linear algebra

Let p be a position, we define

$$\sigma(p) = \psi(w[0, p]) = \begin{pmatrix} w[0, p]_0 \\ w[0, p]_1 \\ w[0, p]_2 \\ w[0, p]_6 \end{pmatrix}, \text{ example : } \sigma(9) = \psi(602106226) = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 3 \end{pmatrix}$$

Lemma (J. Cassaigne et al., 2014)

If q is a child of p and a the proper prefix linked to q (via the bijection), we get

$$\sigma(q) = M\sigma(p) + \psi(a)$$

Example :

$$\sigma(9) = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \sigma(5) = \psi(60210) = \psi(6)$$
Corollary (J. Cassaigne et al., 2014)

If \(\{p_i\}_{i=0}^{\infty} \) is the ancestral sequence of a position \(p \) and denoting \(a_i \) the proper prefix used to link \(p_i \) to \(p_{i+1} \), we get: \(\sigma(p_0) = \sum_{i=0}^{\infty} M^i \psi(a_i) \).
So, how does it work?

- Using parents and graphs, we get bounds for $v = \psi(b) - \psi(c)$
- Using the lattice, we get other bounds for v
- v lies in a ball of fixed radius
- This ball allow us to consider a finite subgraph
- We detect additive cubes by computing
So, how does it work?

- Using parents and graphs, we get bounds for $v = \psi(b) - \psi(c)$
- Using the lattice, we get other bounds for v
- v lies in a ball of fixed radius
- This ball allows us to consider a finite subgraph
- We detect additive cubes by computing

Using exactly the same arguments but considering two consecutive blocks rather than three, it is possible to detect additive squares
Statistics

Morphisms of size 2

- 32068 morphisms avoiding additive cubes, over 4-letters alphabets included in \{0, 1, \ldots, 25\}
- Less than 5% with a fixed point containing additive non-abelian squares
- 23 morphisms avoiding additive cubes over \{0, 1, 5, 25\}
- 2 morphisms avoiding additive cubes over \{0, 2, 5, 11\}
- At least one morphism for each alphabet included in \{0, 1, \ldots, 25\} except \{0, 1, 2, 3\} and \{0, 1, 2, 4\}.
- All morphisms avoiding additive cubes are similar to \varphi_0
Statistics

Morphisms of size 3

- 132 morphisms over 4-letters alphabets \{0, 1, 2, c\} (4 \leq c \leq 9) avoiding additive cubes
- Not all similar to \(\varphi_0\) : there is an other class
- 9 morphisms avoiding additive cubes over the alphabet \{0, 1, 2, 4\}, 5 are similar to \(\varphi_0\)
Proposition (Jamet, L., Stoll)

The following morphisms avoid additive cubes:

\[\varphi_2 : \begin{cases}
0 & \mapsto 21 \\
1 & \mapsto 011 \\
2 & \mapsto 214 \\
4 & \mapsto 244
\end{cases} \quad \text{and} \quad \varphi_3 : \begin{cases}
0 & \mapsto 4 \\
1 & \mapsto 12 \\
2 & \mapsto 0 \\
4 & \mapsto 100
\end{cases} \]

Where \(\varphi_3 \) is similar to \(\varphi_0 \)
Proposition (Jamet, L., Stoll)

The following morphisms avoid additive cubes:

\[\varphi_2 : \begin{cases}
0 \mapsto 21 \\
1 \mapsto 011 \\
2 \mapsto 214 \\
4 \mapsto 244
\end{cases} \quad \text{and} \quad \varphi_3 : \begin{cases}
0 \mapsto 4 \\
1 \mapsto 12 \\
2 \mapsto 0 \\
4 \mapsto 100
\end{cases} \]

Where \(\varphi_3 \) is similar to \(\varphi_0 \)

Question

If \(\varphi \) is a morphism avoiding additive cubes, do there exist integers \(k \) and \(n \) such that:

\[\varphi^k \simeq \varphi_0^n \]
Thank you for your attention