
Rigidity and substitutive dendric words

Julien Leroy

University of Liège
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Extension graphs

Take w ∈ AN and u ∈ Fac(w).

w = u · · ·

The extention graph of u in w is the undirected graph Ew(u) = (V ,E ), where

I V = {a ∈ A | au ∈ Fac(w)} t {b ∈ A | ub ∈ Fac(w)};

I E = {(a, b) | aub ∈ Fac(w)}.
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Extension graphs of dendric words

Example (Fibonacci)

f = 010 010 10 010 01 010 010100100101001001010 · · ·

Ef(010) = 10101 /∈ Fac(f)
0
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Definition
w ∈ AN is dendric if Ew(u) is a tree for all u ∈ Fac(w)

Remark
w is dendric if Ew(u) is a tree for all bispecial factors u

Non-left special factors Non-right special factors
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Various families of dendric words

I Sturmian words are dendric

I Arnoux-Rauzy words are dendric

I Interval exchange words are dendric

I There is more
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Various families of dendric words

I Sturmian words are dendric

I Arnoux-Rauzy words are dendric

I Interval exchange words are dendric

I There is more
A-RIET

Dendric

Neutral

p(n) = kn + 1


a 7→ ac

b 7→ bac

c 7→ cbac



Known properties of dendric words

I Recurrence = uniform recurrence

I Return words are bases of the free group

I Tame S-adic representations

I Closed under maximal bifix decoding
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· · ·

r

u u

RFibo(10) = {10, 100}

0 = (10)−1 · 100
1 = 10 · 0−1



Known properties of dendric words

I Recurrence = uniform recurrence

I Return words are bases of the free group

I Tame S-adic representations

I Closed under maximal bifix decoding

a

S-adic representation:
w = limn→+∞ σ0σ1 · · ·σn(a)

Tame: substitutions are

αa,b :

{
a 7→ ab

c 7→ c 6= a

α̃a,b :

{
a 7→ ba

c 7→ c 6= a

Ea,b :


a 7→ b

b 7→ a

c 7→ c 6= a, b



Known properties of dendric words

I Recurrence = uniform recurrence

I Return words are bases of the free group

I Tame S-adic representations

I Closed under maximal bifix decoding

a

Code:
C ⊂ A∗ s.t.
u1 · · · uk = v1 · · · vl

⇓
k = l and ui = vi for all i

Bifix code:

code such that no word is pre-
fix or suffix of another.

Decoding:
C = code, B = alphabet
f : B → C bijection
w ∈ CN 7→ f −1(w) ∈ BN



Known properties of dendric words

a
I Recurrence = uniform recurrence

I Return words are bases of the free group

I Tame S-adic representations

I Closed under maximal bifix decoding

...

Questions: which words can be dendric ? In particular, what happen for substitutive
words?



Not any substitutive word is dendric

Example (Thue-Morse)

t = 0110100110010110100101100110100110010110 · · ·
Et(ε) Et(010)
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Thue-Morse word is not dendric for good reasons

Theorem (Berthé, Dolce, Durand, L., Perrin)

If σ is primitive and constant length, then σω(a) is not dendric.

A system (X ,S) is totally minimal if (X ,Sn) is minimal for all n.

Lemma
A minimal system (X ,S) is not totally minimal iff X has a cyclic partition:

X =
⋃n−1

i=0 Xi and S(Xi ) = Xi+1 mod n.

Sketch of the proof of Theorem.

I Minimal dendric shifts are totally minimal

I Take X0 =
⋃

a∈A σ([a])

X0,S(X0), . . . ,S |σ|−1(X0) is a cyclic partition of (Xσ,S)
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But one can decide it

Theorem (Dolce, Kyriakoglou, L.)

If σ is a primitive substitution, one can decide whether σω(a) is dendric or not.



Towards a “canonical” substitution

Definition
The stabilizer of w ∈ AN is the monoid of substitutions that generate w, i.e.

Stab(w) = {τ : A∗ → A∗ | ∃a ∈ A : τω(a) = w} ∪ {id}

w is rigid if Stab(w) is cyclic, i.e. there exists τ : A∗ → A∗ s.t.

Stab(w) = {τn | n ∈ N}.

Remark
Not the same notion as rigidity in dynamics.

Question: are dendric words rigid?
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Particular cases are known

Theorem (Séébold 1998, Richomme and Séébold 2012, Rao and Wen 2010)

Sturmian words are rigid.

Theorem (Krieger 2008)

Characteristic Arnoux-Rauzy words are rigid.

Proofs are not directly generalizable for dendric words.



Partial result for the general case

Theorem (Berthé, Dolce, Durand, L., Perrin)

Let w be a dendric word.

1. If σ, τ ∈ Stab(w) are primitive, then

σm = τn for some m, n > 0.

2. If w is recurrent and substitutive, then there exists θ primitive and tame s.t. for
any primitive σ ∈ Stab(w), there is a tame substitution τ s.t.

σm = τθnτ−1 for some m, n > 0.

The proof uses return words and S-adic representations



Many questions remain open

I Rigidity is not solved. In particular, we have information only on the primitive
substitution in the stabilizer. Is there something else?

I Could we describe dendric substitutions, i.e., substitutions that preserve
dendricity?

I Are standard tame substitutions of some interest (like epistandard substitutions)?

...
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