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Bidimensional ice stable states [Pauling-Lieb]: Forbidden:
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SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1

01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops

0

1

1

5 / 14



SFT (subshift of finite type): subset of AZ2
, defined by a finite set of

forbidden patterns.

Ex: Hard square shift, ou hard core model.

Alphabet A = {0, 1}, forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1

5 / 14



Computing physical quantities related to the model?

Entropy: ”quantity of possible states”.

Nn(X ): number of observable n size squares.

Free tiles
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Computing physical quantities related to the model?

Entropy: ”quantity of possible states”.

Nn(X ): number of observable n size squares.
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Entropy of a SFT X:

h(X ) = inf
n≥1

log2(Nn(X ))

n2

= inf
n

log2(N loc
n (X ))

n2

Free tiles

h = 1

Hard core

h ≥ 1/2

Ice [Lieb 67]

h = (4/3)3/2?

Semi-computable from above:

Algorithmen = 1
h(X )

r1

n = 2
h(X )

r2
n = 3

h(X )

r3
n = 4

h(X )

r4
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Does there exist a ”universal method” to compute the entropy of SFT?

Algorithm
Description of the SFT

Integer n

h

2−n
rn
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Implies computability:

Algorithm
Description of the SFT

Integer n

h

2−n
rn

9 / 14



Théorème (Hochman, Meyerovitch 2010)

The possible values of the bidimensional SFT are the semi-computable
from above numbers.

These numbers include non-computable numbers.

Exemple: ∑
k∈H

2−k ,

H: programs which never stop on n = 0.
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Under which kind of (dynamical) constraints entropy becomes
(uniformly) computable?

Example: the property of (constant) block gluing (ex: hard core model)
[Pavlov, Schraudner 2015], computable in time 2O(n2).
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Threshold effect?

f (n)-block gluing:

q

n

q

f (n)

p

Théorème (G., Sablik)

1 The possible values of entropy for linear block gluing (f (n) = O(n),
ex: ice) are the non-negative numbers semi-computable from above.

2 If f (n) = o(log(n)), entropy is computable.

Answer to problem 9.1 of Hochman and Meyerovitch.
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Characterisation of a threshold for f?

For decidable subshifts (not including all SFT), meaning that
n 7→ Nn(X ) is computable:

Théorème (G.,Hellouin)

Let f : N→ N be non-decreasing.

1
∑

n
f (n)
n2

< +∞ with computable speed: the entropy is computable.

2
∑

n
f (n)
n2

= +∞: possible values: semi-computable numbers from
above.

13 / 14



Questions left open:

Existence of a threshold for multidimensional SFT?

Characterisation of the possible values under the threshold ?

General aim: understand the conditions under which we can compute the
entropy of physical pertinent models.
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