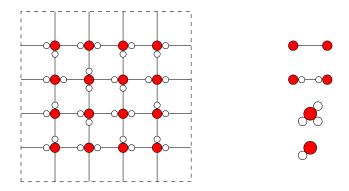
Computing the entropy of multidimensional subshifts of finite type

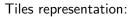
Silvère Gangloff

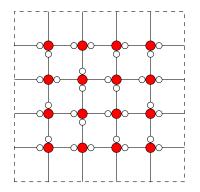
LIP, ENS Lyon

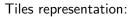
Septembre 11, 2018

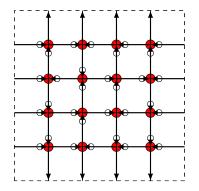
Bidimensional ice stable states [Pauling-Lieb]: Forbidden:

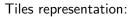


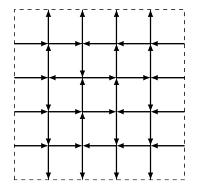




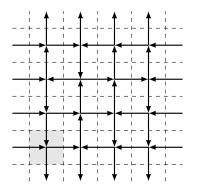




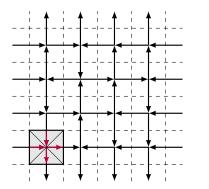




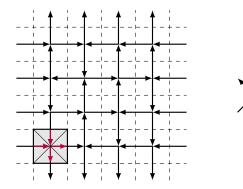
Tiles representation:



Tiles representation:



Tiles representation:



H. Wang Tiles (1960'):

possible:

not possible:

Ex: Hard square shift, ou hard core model.

Ex: Hard square shift, ou hard core model.

Alphabet $\mathcal{A} = \{0, 1\}$, forbidden patterns $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ et $\boxed{1 \pm 1}$.

Ex: Hard square shift, ou hard core model.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

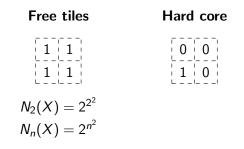
Entropy: "quantity of possible states".

 $N_n(X)$: number of observable *n* size squares.

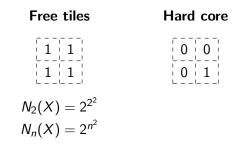


Entropy: "quantity of possible states".

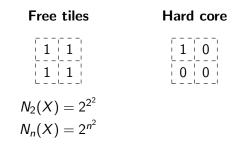
 $N_n(X)$: number of observable *n* size squares.



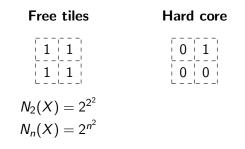
Entropy: "quantity of possible states".



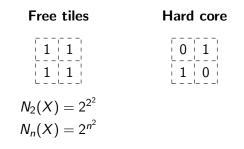
Entropy: "quantity of possible states".



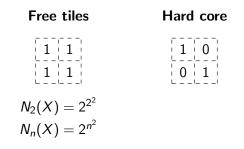
Entropy: "quantity of possible states".



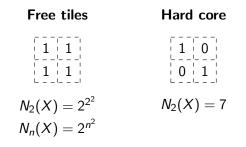
Entropy: "quantity of possible states".



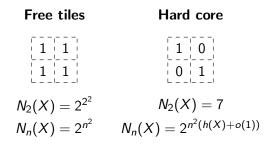
Entropy: "quantity of possible states".



Entropy: "quantity of possible states".



Entropy: "quantity of possible states".



$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h=1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2} = \inf_n \frac{\log_2(N_n^{loc}(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h = 1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2} = \inf_n \frac{\log_2(N_n^{loc}(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h=1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$n = 1$$
 \longrightarrow Algorithme $\xrightarrow{h(X)}$

$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2} = \inf_n \frac{\log_2(N_n^{loc}(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h=1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$n = 2$$
 \longrightarrow Algorithme $\xrightarrow{h(X)}$

$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2} = \inf_n \frac{\log_2(N_n^{loc}(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h = 1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$n = 3$$
 \longrightarrow Algorithme $\xrightarrow{h(X)}$

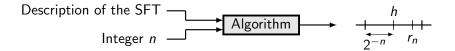
$$h(X) = \inf_{n \ge 1} \frac{\log_2(N_n(X))}{n^2} = \inf_n \frac{\log_2(N_n^{loc}(X))}{n^2}$$

Free tiles	Hard core	Ice [Lieb 67]
h=1	$h\geq 1/2$	$h = (4/3)^{3/2}$?

$$n = 4$$
 \longrightarrow Algorithme $\xrightarrow{h(X)}$

Does there exist a "universal method" to compute the entropy of SFT?

Does there exist a "universal method" to compute the entropy of SFT?



Implies computability:

The possible values of the bidimensional SFT are the **semi-computable** from above numbers.

The possible values of the bidimensional SFT are the **semi-computable** from above numbers.

These numbers include non-computable numbers.

The possible values of the bidimensional SFT are the **semi-computable** from above numbers.

These numbers include non-computable numbers.

Exemple:

$$\sum_{k\in\mathcal{H}}2^{-k},$$

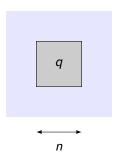
The possible values of the bidimensional SFT are the **semi-computable** from above numbers.

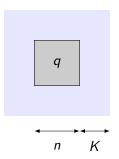
These numbers include non-computable numbers.

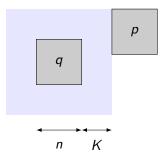
Exemple:

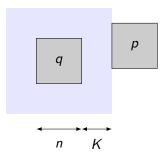
$$\sum_{k\in\mathcal{H}} 2^{-k},$$

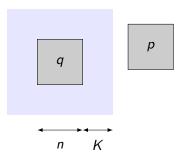
 \mathcal{H} : programs which never stop on n = 0.





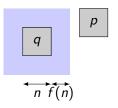




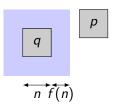


f(n)-block gluing:

f(n)-block gluing:



f(n)-block gluing:

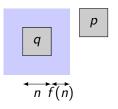


Théorème (G., Sablik)

1 The possible values of entropy for linear block gluing (f(n) = O(n), ex: ice) are the non-negative numbers semi-computable from above.

2 If $f(n) = o(\log(n))$, entropy is computable.

f(n)-block gluing:



Théorème (G., Sablik)

• The possible values of entropy for linear block gluing (f(n) = O(n), ex) ex: ice) are the non-negative numbers semi-computable from above.

2 If $f(n) = o(\log(n))$, entropy is computable.

Answer to problem 9.1 of Hochman and Meyerovitch.

Characterisation of a threshold for f?

For **decidable subshifts** (not including all SFT), meaning that $n \mapsto N_n(X)$ is computable:

Théorème (G., Hellouin)

Let $f : \mathbb{N} \to \mathbb{N}$ be non-decreasing.

- **1** $\sum_{n} \frac{f(n)}{n^2} < +\infty$ with computable speed: the entropy is computable.
- 2 $\sum_{n} \frac{f(n)}{n^2} = +\infty$: possible values: semi-computable numbers from above.

Existence of a threshold for multidimensional SFT?

Existence of a threshold for multidimensional SFT?

Characterisation of the possible values under the threshold ?

Existence of a threshold for multidimensional SFT?

Characterisation of the possible values under the threshold ?

General aim: understand the conditions under which we can compute the entropy of physical pertinent models.