Complexity of Robinson tiling

Galanov Ilya Laboratoire d'Informatique de Paris Nord Université Paris 13

э

1

< f□

Table of Contents

• What is Robinson tiling?

2 Motivation

3 Complexity

September 11, 2018 2 / 34

э

1

- ∢ /⊐ ►

Table of Contents

• What is Robinson tiling?

2 Motivation

Occupie Complexity

September 11, 2018 3 / 34

3

1

< i□ >

Robinson tileset

- Tiles of type (a) are called *bumpy corners*
- Of type (b) are called corners
- All the other are called arms.

Tiling

- Tiling: covering of the plane by interior disjoint tiles.
- Aperiodic tiling: no invariance by translation
- All Robinson tilings are aperiodic!

Supertiles

Supertiles of second and third rank.

<ロト <四ト < 臣ト < 臣ト

E

E

< ∃ >

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

September 11, 2018 9 / 34

E

◆ロト ◆聞ト ◆ヨト ◆ヨト

The Robinson tiling can be either made of

- one infinite order supertile
- · contain two or four infinite order supertiles

The question: how many distinct blocks of size $n \times n$ there are in Robinson tiling made of one infinite order supertile?

Table of Contents

1 What is Robinson tiling?

2 Motivation

3 Complexity

э September 11, 2018

- 一司

Ξ

Motivation

What is local self-assembly?

- units of the growing cluster must be added one by one
- decisions are local, i.e. according to tiles within a fixed distance
- no infomation must be stored between the steps

Motivation is to prove that it is impossible to assemble a Robinson tiling just by chance!

• Deceptions: adding tiles one by one may lead to a pattern that cannot be further extended.

- (A 🖓

э

Alternative representation

< A

э

E

Table of Contents

1 What is Robinson tiling?

2 Motivation

- 一司

Ξ

Notation

Denote $n \times n$ square by S_n . Mark cells of S_n with a symbol

- C if we have chosen this cell to be a corner
- V if it is *possible* to place a corner tile
- black dot (\bullet) if otherwise

Step 1

С	٠	С	٠	С
•	V	•	V	•
С	٠	С	٠	С
•	V	•	V	•
С	•	С	٠	С

< □ > < 同 >

•	V	•	V	٠
С	٠	С	٠	С
•	V	٠	V	•
С	٠	С	٠	С
•	V	•	V	•

Four variants for corner tiles.

E

ъ

Step 2

Four variants to place a corner tile when there is already a corner tile in [2,2].

- (A 🖓

Lemma

Lemma

If two squares have the same number of vacant places, then there is the same number of possibilities to complete both to a correct pattern.

Bijection

- All the cells are defined except for two rows and two columns.
- One of 'crossroads' have to be a corner tile

Counting the vacant places

If n = 2k then the number of vacant places after the first step is $k \times k$.

If n = 2k + 1 then:

- corner tile in position [1,1] : $k \times k$
- corner tile in position [2,2] : $(k+1) \times (k+1)$
- corner tile in position [1,2] : $k \times (k+1)$
- corner tile in position [2,1] : $k \times (k+1)$

Notation

Denote by

- A_1 number of all correct tilings of S_2 with a corner tile in [1,1]
- A_n number of all correct tilings of S_n
- B_n number of all correct tilings of S_{2n+1} with a corner tile in [1,2]

Recurrence relations

$$A_{2n} = 4 \cdot A_n$$

$$A_{2n+1} = A_n + A_{n+1} + 2 \cdot B_n$$

$$B_{2n} = 2 \cdot A_n + 2 \cdot B_n$$

$$B_{2n+1} = 2 \cdot A_{n+1} + 2 \cdot B_n$$

Values of A_1 and B_1 can be found by an exhaustive search:

$$A_1 = 56;$$

 $B_1 = 124.$

- < A

э

Guess the solution

The solution for recurrence relations can be written as

$$A_n = a(n) \cdot A_1 + b(n) \cdot B_1,$$

where

$$a(n) = 5n^2 - 12n \cdot 2^{\lfloor \log_2 n \rfloor} + 8 \cdot 2^{2\lfloor \log_2 n \rfloor}$$
(1)
$$b(n) = -2n^2 + 6n \cdot 2^{\lfloor \log_2 n \rfloor} - 4 \cdot 2^{2\lfloor \log_2 n \rfloor}$$
(2)

The sum of (1) and (2) gives us:

Voila

Theorem

For any Robinson tiling made of one infinite order supertile, once n > 1, the number of distinct $n \times n$ square blocks is given by

$$A(n) = 32n^2 + 72n \cdot 2^{\lfloor \log_2 n \rfloor} - 48 \cdot 2^{2 \lfloor \log_2 n \rfloor}$$

Conjecture

For any seed the probability to construct $k \times k$ square patch of Robinson tiling via local self-assembly process tends to 0.

Thank you for your attention!

э