Complexity of Robinson tiling

Galanov Ilya
Laboratoire d'Informatique de Paris Nord
Université Paris 13

Table of Contents

(1) What is Robinson tiling?
(2) Motivation
(3) Complexity

Table of Contents

(1) What is Robinson tiling?
(2) Motivation
(3) Complexity

Robinson tileset

(a)

(b)

(c)

(d)

(e)

(f)

- Tiles of type (a) are called bumpy corners
- Of type (b) are called corners
- All the other are called arms.

Tiling

- Tiling: covering of the plane by interior disjoint tiles.
- Aperiodic tiling: no invariance by translation
- All Robinson tilings are aperiodic!

Supertiles

Supertiles of second and third rank.

Hierarchy

$$
\begin{aligned}
& \square \\
& \square
\end{aligned}
$$

Hierarchy

Hierarchy

Hierarchy

The Robinson tiling can be either made of

- one infinite order supertile
- contain two or four infinite order supertiles

The question: how many distinct blocks of size $n \times n$ there are in Robinson tiling made of one infinite order supertile?

Table of Contents

(1) What is Robinson tiling?

(2) Motivation

(3) Complexity

Motivation

What is local self-assembly?

- units of the growing cluster must be added one by one
- decisions are local, i.e. according to tiles within a fixed distance
- no infomation must be stored between the steps

Motivation is to prove that it is impossible to assemble a Robinson tiling just by chance!

Deceptions

- Deceptions: adding tiles one by one may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Deceptions

- Deceptions: adding tiles one by one (self-assembly) may lead to a pattern that cannot be further extended.

Alternative representation

Table of Contents

(1) What is Robinson tiling?

(2) Motivation
(3) Complexity

Notation

Denote $n \times n$ square by S_{n}. Mark cells of S_{n} with a symbol

- C if we have chosen this cell to be a corner
- V if it is possible to place a corner tile
- black dot (•) if otherwise

Step 1

C	\bullet	C	\bullet	C
\bullet	V	\bullet	V	\bullet
C	\bullet	C	\bullet	C
\bullet	V	\bullet	V	\bullet
C	\bullet	C	\bullet	C

V	\bullet	V	\bullet	V
\bullet	C	\bullet	C	\bullet
V	\bullet	V	\bullet	V
\bullet	C	\bullet	C	\bullet
V	\bullet	V	\bullet	V

\bullet	C	\bullet	C	\bullet
V	\bullet	V	\bullet	V
\bullet	C	\bullet	C	\bullet
V	\bullet	V	\bullet	V
\bullet	C	\bullet	C	\bullet

\bullet	V	\bullet	V	\bullet
C	\bullet	C	\bullet	C
\bullet	V	\bullet	V	\bullet
C	\bullet	C	\bullet	C
\bullet	V	\bullet	V	\bullet

Four variants for corner tiles.

Step 2

Four variants to place a corner tile when there is already a corner tile in [2,2].

Lemma

Lemma

If two squares have the same number of vacant places, then there is the same number of possibilities to complete both to a correct pattern.

Bijection

- All the cells are defined except for two rows and two columns.
- One of 'crossroads' have to be a corner tile

Counting the vacant places

If $n=2 k$ then the number of vacant places after the first step is $k \times k$.

If $n=2 k+1$ then:

- corner tile in position [1,1] : $k \times k$
- corner tile in position [2,2]: $(k+1) \times(k+1)$
- corner tile in position [1,2]: $k \times(k+1)$
- corner tile in position $[2,1]: k \times(k+1)$

Notation

Denote by

- A_{1} - number of all correct tilings of S_{2} with a corner tile in [1,1]
- A_{n} - number of all correct tilings of S_{n}
- B_{n} - number of all correct tilings of $S_{2 n+1}$ with a corner tile in $[1,2]$

Recurrence relations

$$
\begin{aligned}
& A_{2 n}=4 \cdot A_{n} \\
& A_{2 n+1}=A_{n}+A_{n+1}+2 \cdot B_{n} \\
& B_{2 n}=2 \cdot A_{n}+2 \cdot B_{n} \\
& B_{2 n+1}=2 \cdot A_{n+1}+2 \cdot B_{n}
\end{aligned}
$$

Values of A_{1} and B_{1} can be found by an exhaustive search:

$$
\begin{aligned}
& A_{1}=56 \\
& B_{1}=124
\end{aligned}
$$

Guess the solution

The solution for recurrence relations can be written as

$$
A_{n}=a(n) \cdot A_{1}+b(n) \cdot B_{1}
$$

where

$$
\begin{align*}
& a(n)=5 n^{2}-12 n \cdot 2^{\left\lfloor\log _{2} n\right\rfloor}+8 \cdot 2^{2\left\lfloor\log _{2} n\right\rfloor} \tag{1}\\
& b(n)=-2 n^{2}+6 n \cdot 2^{\left\lfloor\log _{2} n\right\rfloor}-4 \cdot 2^{2\left\lfloor\log _{2} n\right\rfloor} \tag{2}
\end{align*}
$$

The sum of (1) and (2) gives us:

Voila

Theorem

For any Robinson tiling made of one infinite order supertile, once $n>1$, the number of distinct $n \times n$ square blocks is given by

$$
A(n)=32 n^{2}+72 n \cdot 2^{\left\lfloor\log _{2} n\right\rfloor}-48 \cdot 2^{2\left\lfloor\log _{2} n\right\rfloor} .
$$

Conjecture

For any seed the probability to construct $k \times k$ square patch of Robinson tiling via local self-assembly process tends to 0 .

Thank you for your attention!

