k-Spectra of c-BALANCED WORDS

k-SPECTRA

Pamela Fleischmann, Joel D. Day
\{fpa,jda\}@informatik.uni-kiel.de
September, $13^{\text {th }}$
Kiel University
Dependable Systems Group

Information Loss

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

EXAMPLE

banana

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

EXAMPLE

a a a

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

EXAMPLE

banana

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

EXAMPLE

$$
b \quad a n a
$$

Scattered Factors

informal: deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

Definition (Scattered Factor, (Scattered) Subword)

$v=v_{1} \ldots v_{n} \in \Sigma^{*}$ scattered factor of w iff

$$
\exists u_{0} \ldots u_{n} \in \Sigma^{*}: w=u_{0} v_{1} u_{1} \ldots u_{n-1} v_{n} u_{n} .
$$

k-Spectra

Definition

set of all scattered factors of w is the spectrum $\operatorname{ScatFact}(w)$

k-Spectra

Definition

O set of all scattered factors of w is the spectrum ScatFact (w)
set of all scattered factors of w of length k is the k-spectrum ScatFact $_{k}(w)$

k-Spectra

Definition

O set of all scattered factors of w is the spectrum ScatFact(w)
\bigcirc set of all scattered factors of w of length k is the k-spectrum ScatFact ${ }_{k}(w)$

Example: abba

$\{\mathrm{abba}\}$	4-spectrum
$\{\mathrm{aba}, \mathrm{bba}, \mathrm{abb}\}$	3-spectrum
$\{\mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \mathrm{ba}\}$	2-spectrum
$\{\mathrm{a}, \mathrm{b}\}$	1-spectrum

k-Spectra

Definition

set of all scattered factors of w is the spectrum ScatFact (w)
set of all scattered factors of w of length k is the k-spectrum ScatFact $_{k}(w)$

We are not considering multisets.

Open Problems

Problem

Given $S \subseteq \Sigma^{*}$ decide whether S is the spectrum of some word w.

Open Problems

Problem

Given $S \subseteq \Sigma^{*}$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, e.g. $\{\mathrm{ab}, \mathrm{ba}, \mathrm{aa}\}$ is not independent since aa can be deduced from ab and ba.

Open Problems

Problem

Given $S \subseteq \Sigma^{*}$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, e.g. $\{\mathrm{ab}, \mathrm{ba}, \mathrm{aa}\}$ is not independent since aa can be deduced from ab and ba.

Problem

Determine the index of the equivalence relation that relates word with the same spectrum.

Middle Step Between S and w

Middle Step Between S and w

Reformulated Problem

Problem
 Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^{*}$ and $k \in \mathbb{N}$ with $\left|\operatorname{ScatFact}_{k}(w)\right|=n$.

Reformulated Problem

Problem

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^{*}$ and $k \in \mathbb{N}$ with $\left|\operatorname{ScatFact}_{k}(w)\right|=n$.
or more restricted:
Problem
Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^{*}$ with \mid ScatFact $_{k}(w) \mid=n$.

Reformulated Problem

Problem

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \sum^{*}$ and $k \in \mathbb{N}$ with $\left|\operatorname{ScatFact}_{k}(w)\right|=n$.
or more restricted:

Problem

Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^{*}$ with $\left|\operatorname{ScatFact}_{k}(w)\right|=n$.

To start with we only consider a binary alphabet $\Sigma=\{a, b\}$.

Examples

$$
n=3, k=2: w=a a b b
$$

Examples

($n=3, k=2: w=a a b b$
$n=k+2, k \in \mathbb{N}_{>2},|w|_{a}=|w|_{b}$ does not have a solution

Examples

($n=3, k=2: w=a \mathrm{abb}$
$n=k+2, k \in \mathbb{N}_{>2},|w|_{a}=|w|_{b}$ does not have a solution
$n=2^{k}, k \in \mathbb{N}: w=(\mathrm{ab})^{k}$

Examples

($n=3, k=2: w=a a b b$
$n=k+2, k \in \mathbb{N}_{>2},|w|_{a}=|w|_{b}$ does not have a solution
$n=2^{k}, k \in \mathbb{N}: w=(\mathrm{ab})^{k}$
n square number at least $4: k:=2(\sqrt{n}-1), w=a^{\frac{k}{2}} b^{k} a^{\frac{k}{2}}$

c-balanced words

Definition

Binary word $w \in\{\mathrm{a}, \mathrm{b}\}^{*} c$-balanced for a $c \in \mathbb{N}_{0}$ iff

$$
\left||w|_{a}-|w|_{b}\right|=c .
$$

c-balanced words

Definition

Binary word $w \in\{\mathrm{a}, \mathrm{b}\}^{*} c$-balanced for a $c \in \mathbb{N}_{0}$ iff

$$
\left||w|_{\mathrm{a}}-|w|_{\mathrm{b}}\right|=c .
$$

$c=1: w$ balanced

c-balanced words

Definition

Binary word $w \in\{\mathrm{a}, \mathrm{b}\}^{*} c$-balanced for a $c \in \mathbb{N}_{0}$ iff

$$
\left||w|_{\mathrm{a}}-|w|_{\mathrm{b}}\right|=c .
$$

○ $c=1: w$ balanced
$c=0: w$ strictly balanced

c-balanced words

Definition

Binary word $w \in\{\mathrm{a}, \mathrm{b}\}^{*} c$-balanced for a $c \in \mathbb{N}_{0}$ iff

$$
\left||w|_{\mathrm{a}}-|w|_{\mathrm{b}}\right|=c
$$

○ $c=1: w$ balanced
$\bigcirc=0: w$ strictly balanced

Obviously for every $w \in\{\mathrm{a}, \mathrm{b}\}$ exists $c \in \mathbb{N}_{0}$ such that w is c-balanced.

Pecularities of Restriction to Cardinalities

Example: 3-spectrum

abbab	baaba	babba	abaab
	aaa		aaa
aab	aab		aab
aba	aba	aba	aba
abb		abb	abb
	baa	baa	baa
bab	bab	bab	bab
bba	bba	bba	
bbb		bbb	
6	6	6	6

Pecularities of Restriction to Cardinalities

Example: 3-spectrum

abbab	baaba	babba	abaab	abbab	renaming baaba	reverse babba	both abaab
aab	aaa aab		aaa aab	aab	bba	baa	abb
aba	aba	aba	aba	aba	bab	aba	bab
abb		abb	abb	aba	bab	aba	bab
bab	baa bab	baa bab	baa bab	abb	baa	bba	aab
bba	bba	bba		bab	aba	bab	aba
bbb		bbb			aba	bab	
6	6	6	6	bba	aab	abb	baa
				bbb	aaa	bbb	
				6	6	6	6

Renaming and Reversing

Definition

$0 \bar{\because}: \Sigma \rightarrow \Sigma$ with $\bar{a}=\mathrm{b}$ and $\overline{\mathrm{b}}=\mathrm{a}$ renaming morphism

Renaming and Reversing

Definition

$\bigcirc: \Sigma \rightarrow \Sigma$ with $\overline{\mathrm{a}}=\mathrm{b}$ and $\overline{\mathrm{b}}=$ a renaming morphism
$\bigcirc \cdot^{R}: \Sigma^{*} \rightarrow \Sigma^{*}$ with $w^{R}=w[|w|] \ldots w[1]$ with the $i^{\text {th }}$ letter $w[i]$ of w

Renaming and Reversing

Definition

$\bigcirc: \Sigma, \Sigma$ with $\overline{\mathrm{a}}=\mathrm{b}$ and $\overline{\mathrm{b}}=$ a renaming morphism
$\bigcirc{ }^{R}: \Sigma^{*} \rightarrow \Sigma^{*}$ with $w^{R}=w[|w|] \ldots w[1]$ with the $i^{\text {th }}$ letter $w[i]$ of w

Lemma

- ScatFact $(\bar{w})=\{\bar{u} \mid u \in \operatorname{ScatFact}(w)\}$

Renaming and Reversing

Definition

$\bigcirc: \Sigma, \Sigma$ with $\overline{\mathrm{a}}=\mathrm{b}$ and $\overline{\mathrm{b}}=$ a renaming morphism
$\bigcirc{ }^{R}: \Sigma^{*} \rightarrow \Sigma^{*}$ with $w^{R}=w[|w|] \ldots w[1]$ with the $i^{\text {th }}$ letter $w[i]$ of w

Lemma

- ScatFact $(\bar{w})=\{\bar{u} \mid u \in \operatorname{ScatFact}(w)\}$
$\bigcirc \operatorname{ScatFact}\left(w^{R}\right)=\left\{u^{R} \mid u \in \operatorname{ScatFact}(w)\right\}$

Pecularities of Restriction to Cardinalities

Corollary

The cardinalities of the spectra (and k-spectra) of w, w^{R}, and \bar{w} are the same:

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=\left|\operatorname{ScatFact}_{k}\left(w^{R}\right)\right|=\left|\operatorname{ScatFact}_{k}(\bar{w})\right|
$$

Pecularities of Restriction to Cardinalities

Corollary

The cardinalities of the spectra (and k-spectra) of w, w^{R}, and \bar{w} are the same:

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=\left|\operatorname{ScatFact}_{k}\left(w^{R}\right)\right|=\left|\operatorname{ScatFact}_{k}(\bar{w})\right| .
$$

$\mathrm{a}<\mathrm{b}$ assumed: only consider the lexicographically smallest element in such a equivalence class

Solving the first problem

> Theorem
> For all $n \in \mathbb{N}$ the k-spectrum of $w=\mathrm{a}^{k} \mathrm{~b}^{k}$ for $k=n-1$ has n elements, i.e. $\left|\operatorname{ScatFact}_{n-1}\left(\mathrm{a}^{n-1} \mathrm{~b}^{n-1}\right)\right|=n$.

Solving the first problem

Theorem

For all $n \in \mathbb{N}$ the k-spectrum of $w=\mathrm{a}^{k} \mathrm{~b}^{k}$ for $k=n-1$ has n elements, i.e. $\left|\operatorname{ScatFact}_{n-1}\left(\mathrm{a}^{n-1} \mathrm{~b}^{n-1}\right)\right|=n$.

Proof:
all $\mathrm{a}^{r} \mathrm{~b}^{s}$ for $r+s=n-1$ are the scattered factors of length $n-1$

Solving the first problem

Theorem

For all $n \in \mathbb{N}$ the k-spectrum of $w=\mathrm{a}^{k} \mathrm{~b}^{k}$ for $k=n-1$ has n elements, i.e. $\left|\operatorname{ScatFact}_{n-1}\left(\mathrm{a}^{n-1} \mathbf{b}^{n-1}\right)\right|=n$.

Proof:
all $\mathrm{a}^{r} \mathrm{~b}^{s}$ for $r+s=n-1$ are the scattered factors of length $n-1$

On possibilities

Solving the first problem

Theorem

For all $n \in \mathbb{N}$ the k-spectrum of $w=a^{k} \mathrm{~b}^{k}$ for $k=n-1$ has n elements, i.e. $\left|\operatorname{ScatFact}_{n-1}\left(\mathrm{a}^{n-1} \mathrm{~b}^{n-1}\right)\right|=n$.

Corollary

$S_{n}=\left\{\mathrm{a}^{r} \mathbf{b}^{s} \mid r+s=n \in \mathbb{N}\right\}$ is a scattered factor set for all $n \in \mathbb{N}$.

Partly Solving the Second Problem

Theorem

Given $k, n \in \mathbb{N}$ with $n-1 \leq k$ set $c=k-n+1$ and consider $w=\mathrm{a}^{k} \mathrm{~b}^{k-c}$. Then for all $i \in[c]_{0}$ the $(k-i)$-spectrum of w has cardinality n.

Partly Solving the Second Problem

Theorem

Given $k, n \in \mathbb{N}$ with $n-1 \leq k$ set $c=k-n+1$ and consider $w=\mathrm{a}^{k} \mathrm{~b}^{k-c}$. Then for all $i \in[c]_{0}$ the $(k-i)$-spectrum of w has cardinality n.

Proof:
$i=0$: $\mathrm{a}^{r} \mathrm{~b}^{s}$ with $r+s=k \leadsto k-c+1=n$ possibilities
$i \neq 0$: all the scattered factor are just shortened for the $(k-i)$-spectra

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.
k-spectrum of $w=a^{2} b^{4} a^{2}$ has cardinality 9

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.
k-spectrum of $w=a^{2} b^{4} a^{2}$ has cardinality 9
\bigcirc abba is a scattered factor of w and not in the aforementioned sets

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.
k-spectrum of $w=\mathrm{a}^{2} \mathrm{~b}^{4} \mathrm{a}^{2}$ has cardinality 9
\bigcirc abba is a scattered factor of w and not in the aforementioned sets
which scattered factor sets have cardinality $n \in \mathbb{N}$

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.
k-spectrum of $w=a^{2} b^{4} \mathrm{a}^{2}$ has cardinality 9
\bigcirc abba is a scattered factor of w and not in the aforementioned sets

- which scattered factor sets have cardinality $n \in \mathbb{N}$
\bigcirc for a fixed $c \in \mathbb{N}$ and c-balanced words: which cardinalities are reachable

Are we happy now?

Given $n \in \mathbb{N}$ for each c we have $c+1$ different sets being a spectrum of cardinality n.

- k-spectrum of $w=a^{2} b^{4} a^{2}$ has cardinality 9
- abba is a scattered factor of w and not in the aforementioned sets
- which scattered factor sets have cardinality $n \in \mathbb{N}$
\bigcirc for a fixed $c \in \mathbb{N}$ and c-balanced words: which cardinalities are reachable

We were not happy! We would like to fully characterise for given c and word-length which cardinalities are reachable.

Minimal Cardinality

Lemma

For $w \in \Sigma^{*}$ and $k, c \in \mathbb{N}_{0}$ with $c \leq k$ we have

$$
\forall i \in[c]_{0}:\left|\operatorname{ScatFact}_{k-i}(w)\right|=k-c+1 \quad \text { iff } \quad w=\mathrm{a}^{k} \mathrm{~b}^{k-c} .
$$

Moreover $\left|\operatorname{ScatFact}_{k-i}(w)\right| \geq k-c+1$ for all $i \in[c]_{0}$

Minimal Cardinality

Lemma

For $w \in \sum^{*}$ and $k, c \in \mathbb{N}_{0}$ with $c \leq k$ we have

$$
\forall i \in[c]_{0}:\left|\operatorname{ScatFact}_{k-i}(w)\right|=k-c+1 \quad \text { iff } \quad w=\mathrm{a}^{k} \mathrm{~b}^{k-c}
$$

Moreover \mid ScatFact $_{k-i}(w) \mid \geq k-c+1$ for all $i \in[c]_{0}$

Proof idea for remaining part:
suppose $w \neq \mathrm{a}^{k} \mathrm{~b}^{k-c}$ (neither one of the symmetric cases)
$\Rightarrow \quad w=w_{1} \mathrm{aba}_{2} w_{2}$
\bigcirc induction on word-length

k-SPECTRA FOR STRICTLY BALANCED

 WORDS OF LENGTH $2 k$
Properties of strictly balanced words

O same amount of as and bs

Properties of strictly balanced words

O same amount of as and bs

- always even length

Properties of strictly balanced words

O same amount of as and bs
O always even length
O the k-spectra has at most 2^{k} elements

Reaching the Maximal Cardinality

Lemma

The k-spectrum of a strictly balanced word $w \in \Sigma^{*}$ has cardinality 2^{k} iff $w \in\{\mathrm{ab}, \mathrm{ba}\}^{k}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2^{k} \Leftrightarrow w \in\{\mathrm{ab}, \mathrm{ba}\}^{k} .
$$

Reaching the Maximal Cardinality

Lemma

The k-spectrum of a strictly balanced word $w \in \sum^{*}$ has cardinality 2^{k} iff $w \in\{\mathrm{ab}, \mathrm{ba}\}^{k}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2^{k} \Leftrightarrow w \in\{\mathrm{ab}, \mathrm{ba}\}^{k} .
$$

Sketch of Proof:

Reaching the Maximal Cardinality

Lemma

The k-spectrum of a strictly balanced word $w \in \sum^{*}$ has cardinality 2^{k} iff $w \in\{\mathrm{ab}, \mathrm{ba}\}^{k}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2^{k} \Leftrightarrow w \in\{\mathrm{ab}, \mathrm{ba}\}^{k} .
$$

Sketch of Proof:
" \Rightarrow " contraposition; if aa is a factor of w then one $\mathrm{b}^{r} \mathrm{a}^{k-r}$ is not a scattered factor

Reaching the Maximal Cardinality

Lemma

The k-spectrum of a strictly balanced word $w \in \sum^{*}$ has cardinality 2^{k} iff $w \in\{\mathrm{ab}, \mathrm{ba}\}^{k}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2^{k} \Leftrightarrow w \in\{\mathrm{ab}, \mathrm{ba}\}^{k} .
$$

Sketch of Proof:
" \Rightarrow " contraposition; if aa is a factor of w then one $\mathrm{b}^{r} \mathrm{a}^{k-r}$ is not a scattered factor
\bigcirc " \Leftarrow " induction

Spectrum of k-spectra

Spectrum of k-spectra

Proof for " $\operatorname{ScatFact}_{k}(w) \mid=k+1$ iff $w=\mathrm{a}^{k} \mathrm{~b}^{k}$ gives also that $k+2$ is not reachable!

Spectrum of k-spectra

Proof for " $\left|\operatorname{ScatFact}_{k}(w)\right|=k+1$ iff $w=\mathrm{a}^{k} \mathrm{~b}^{k}$ gives also that $k+2$ is not reachable!

Jumbling a and $\mathrm{b}: \mathrm{a}^{k} \mathrm{~b}^{k} \rightarrow(\mathrm{ab})^{k}$

if the as and bs are not nicely ordered we have at least one switch from b to a

Jumbling a and $\mathrm{b}: \mathrm{a}^{k} \mathrm{~b}^{k} \rightarrow(\mathrm{ab})^{k}$

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a strictly balanced word $w \in \sum^{*}$ has cardinality $2 k$ iff w is either $\mathrm{a}^{k-1} \mathrm{bab}^{k-1}$ or $\mathrm{a}^{k-1} \mathrm{~b}^{k} \mathrm{a}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2 k \Leftrightarrow w \in\left\{\mathrm{a}^{k-1} \mathrm{bab}^{k-1}, \mathrm{a}^{k-1} \mathrm{~b}^{k} \mathrm{a}\right\} .
$$

Jumbling a and $\mathrm{b}: \mathrm{a}^{k} \mathrm{~b}^{k} \rightarrow(\mathrm{ab})^{k}$

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a strictly balanced word $w \in \sum^{*}$ has cardinality $2 k$ iff w is either $\mathrm{a}^{k-1} \mathrm{bab}^{k-1}$ or $\mathrm{a}^{k-1} \mathrm{~b}^{k} \mathrm{a}$, i.e.

$$
\left|\operatorname{ScatFact}_{k}(w)\right|=2 k \Leftrightarrow w \in\left\{\mathrm{a}^{k-1} \mathrm{bab}^{k-1}, \mathrm{a}^{k-1} \mathrm{~b}^{k} \mathrm{a}\right\} .
$$

Our proof also shows
OIf w is neither $\mathrm{a}^{k} \mathrm{~b}^{k}$ nor $\mathrm{a}^{k-1} \mathrm{bab} \mathrm{b}^{k-1}$ nor $\mathrm{a}^{k-1} \mathrm{~b}^{k} \mathrm{a}$, then the cardinality is greater than $2 k$

Spectrum of k-spectra

Spectrum of k-spectra

$\mathrm{a}^{k-1} \mathrm{~b}^{k}$ a generalisable to $\mathrm{a}^{k-i} \mathrm{~b}^{k} \mathrm{a}^{i}$ for $i \in\left[\left\lfloor\frac{k}{2}\right\rfloor\right]$:

$$
\left|\operatorname{ScatFact}_{k}\left(\mathrm{a}^{k-i} \mathrm{~b}^{k} \mathrm{a}^{i}\right)\right|=k(i+1)-i^{2}+1
$$

Spectrum of k-spectra

$\mathrm{a}^{k-1} \mathrm{~b}^{k}$ a generalisable to $\mathrm{a}^{k-i} \mathrm{~b}^{k} \mathrm{a}^{i}$ for $i \in\left[\left\lfloor\frac{k}{2}\right\rfloor\right]$:

$$
\left|\operatorname{ScatFact}_{k}\left(\mathrm{a}^{k-i} \mathrm{~b}^{k} \mathrm{a}^{i}\right)\right|=k(i+1)-i^{2}+1
$$

Spectrum of k-spectra

Promising news: the k-spectra of strictly balanced words cannot have cardinality $2 k+i$ for $i \in[k-4]$

Spectrum of k-spectra

Promising news: the k-spectra of strictly balanced words cannot have cardinality $2 k+i$ for $i \in[k-4]$

The third gap . . .

Raised hope: gap between $(i+1) k-i^{2}+1$ and $(i+2) k-(i+1)^{2}+1$

The third gap . . .

Raised hope: gap between $(i+1) k-i^{2}+1$ and $(i+2) k-(i+1)^{2}+1$
but (unfortunately)

The third gap ...

Raised hope: gap between $(i+1) k-i^{2}+1$ and $(i+2) k-(i+1)^{2}+1$
but (unfortunately)

Lemma

The k-spectrum of $\mathrm{a}^{k-1} \mathrm{~b}^{2} \mathrm{ab}^{k-2}$ has exactly $3 k-2$ elements.

The third gap ...

Raised hope: gap between $(i+1) k-i^{2}+1$ and $(i+2) k-(i+1)^{2}+1$
but (unfortunately)
Lemma
The k-spectrum of $\mathrm{a}^{k-1} \mathrm{~b}^{2} \mathrm{ab}^{k-2}$ has exactly $3 k-2$ elements.
and this result is generalisable

The Thing in the "Gap"

Lemma

For $k \geq 5$ and $i \in[k-1]$

- $\left|\operatorname{ScatFact}_{k}\left(\mathrm{a}^{k-2} \mathrm{~b}^{i} \mathrm{ab}^{k-i} \mathrm{a}\right)\right|=k(2 i+2)-6 i+2$
- $\left|\operatorname{ScatFact}_{k}\left(\mathrm{a}^{k-2} \mathrm{~b}^{i} \mathrm{a}^{2} \mathrm{~b}^{k-i}\right)\right|=k(2 i+1)-4 i+2$

Spectrum of k-spectra

$k \geq 38$

The other end of the spectrum

We saw already that the cardinality 2^{k} is reached iff $w=(\mathrm{ab})^{k}$.

The other end of the spectrum

We saw already that the cardinality 2^{k} is reached iff $w=(\mathrm{ab})^{k}$.
Lemma
The k-spectrum of w has cardinality $2^{k}-1$ iff $w=(a b)^{i} \mathrm{a}^{2} \mathrm{~b}^{2}(\mathrm{ab})^{k-i-2}$ for some $i \in[k-2]$.

The other end of the spectrum

We saw already that the cardinality 2^{k} is reached iff $w=(\mathrm{ab})^{k}$.
Lemma
The k-spectrum of w has cardinality $2^{k}-1$ iff $w=(\mathrm{ab})^{i} \mathrm{a}^{2} \mathrm{~b}^{2}(\mathrm{ab})^{k-i-2}$ for some $i \in[k-2]$.

Proof:$" \Leftarrow " \sqrt{ }$
\bigcirc " \Rightarrow " if there is a scattered factor not of the form $b^{i+1} a^{k-i-1}$
then less than $2^{k}-1$ element are in the k-spectrum

Overview for strictly balanced words

