k-Spectra of *c*-Balanced Words

k-Spectra

Pamela Fleischmann, Joel D. Day

{fpa,jda}@informatik.uni-kiel.de

September, 13th

Kiel University Dependable Systems Group

Information Loss

k-Spectra

Definition (Scattered Factor, (Scattered) Subword)

 $v = v_1 \dots v_n \in \Sigma^*$ scattered factor of w iff

 $\exists u_0 \dots u_n \in \Sigma^* : w = u_0 v_1 u_1 \dots u_{n-1} v_n u_n.$

 \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- set of all scattered factors of w of length k is the k-spectrum ScatFact_k(w)

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- \bigcirc set of all scattered factors of *w* of length *k* is the *k*-spectrum ScatFact_k(*w*)

Example: abba

{abba}	4-spectrum
$\{aba, bba, abb\}$	3-spectrum
$\{aa, ab, bb, ba\}$	2-spectrum
{a,b}	1-spectrum

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- set of all scattered factors of w of length k is the k-spectrum ScatFact_k(w)

We are not considering multisets.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, *e.g.* {ab, ba, aa} *is not independent since* aa *can be deduced from* ab *and* ba.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, *e.g.* {ab, ba, aa} *is not independent since* aa *can be deduced from* ab *and* ba.

Problem

Determine the index of the equivalence relation that relates word with the same spectrum.

Middle Step Between S and w

Middle Step Between S and w

k-Spectra

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

or more restricted:

Problem

Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ with $|\operatorname{ScatFact}_k(w)| = n$.

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

or more restricted:

Problem

Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ with $|\operatorname{ScatFact}_k(w)| = n$.

To start with we only consider a binary alphabet $\Sigma = \{a, b\}$.

$$\bigcirc$$
 $n = 3, k = 2$: $w = aabb$

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution
○ $n = 2^k, k \in \mathbb{N}$: $w = (ab)^k$

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution
○ $n = 2^k, k \in \mathbb{N}$: $w = (ab)^k$
○ $n = a^k, k \in \mathbb{N}$: $w = (ab)^k$

 \bigcirc *n* square number at least 4: $k := 2(\sqrt{n} - 1), w = a^{\frac{k}{2}}b^k a^{\frac{k}{2}}$

c-balanced words

Definition

Binary word $w \in \{a, b\}^*$ *c*-balanced for a $c \in \mathbb{N}_0$ iff

$$||w|_{\mathsf{a}} - |w|_{\mathsf{b}}| = c.$$

Binary word $w \in \{a, b\}^*$ *c*-balanced for a $c \in \mathbb{N}_0$ iff

$$||w|_{\mathsf{a}} - |w|_{\mathsf{b}}| = c.$$

 \bigcirc *c* = 1: *w* balanced

A CONTRACTOR OF CONTRACTOR OF

Binary word $w \in \{a, b\}^*$ *c*-balanced for a $c \in \mathbb{N}_0$ iff

 $||w|_{a} - |w|_{b}| = c.$

 \bigcirc *c* = 1: *w* balanced

 \bigcirc *c* = 0: *w* strictly balanced

Binary word $w \in \{a, b\}^*$ *c*-balanced for a $c \in \mathbb{N}_0$ iff

$$||w|_{\mathsf{a}} - |w|_{\mathsf{b}}| = c.$$

 \bigcirc *c* = 1: *w* balanced \bigcirc *c* = 0: *w* strictly balanced

Obviously for every $w \in \{a, b\}$ exists $c \in \mathbb{N}_0$ such that w is *c*-balanced.

Example: 3-spectrum

abbab	baaba	babba	abaab	
	ааа		ааа	
aab	aab		aab	
aba	aba	aba	aba	
abb		abb	abb	
	baa	baa	baa	
bab	bab	bab	bab	
bba	bba	bba		
bbb		bbb		
6	6	6	6	

Example: 3-spectrum

					renaming	reverse	both
abbab	baaba	babba	abaab	abbab	baaba	babba	abaab
aab	aaa aab		aaa aab	aab	bba	baa	abb
aba abb	aba	aba abb	aba abb	aba	bab	aba	bab
bab	baa bab	baa bab	baa bab	abb	baa	bba	aab
bba bbb	bba	bba bbb		bab	aba	bab	aba
6	6	6	6	bba	aab	abb	baa
				bbb	ааа	bbb	aaa * STG
				6	6	6	6/0
					I	- NI	

\bigcirc $\overline{\cdot}: \Sigma \to \Sigma$ with $\overline{a} = b$ and $\overline{b} = a$ renaming morphism

○ $\overline{\cdot}$: Σ → Σ with \overline{a} = b and \overline{b} = a renaming morphism ○ \cdot^{R} : Σ* → Σ* with $w^{R} = w[|w|] \dots w[1]$ with the *i*th letter w[i] of w

○ $\overline{\cdot}$: Σ → Σ with \overline{a} = b and \overline{b} = a renaming morphism ○ \cdot^{R} : Σ* → Σ* with $w^{R} = w[|w|] \dots w[1]$ with the *i*th letter w[i] of w

Lemma

$$\bigcirc \text{ ScatFact}(\overline{w}) = \{\overline{u} \mid u \in \text{ScatFact}(w)\}\$$

○ $\overline{\cdot} : \Sigma \to \Sigma$ with $\overline{a} = b$ and $\overline{b} = a$ renaming morphism ○ $\cdot^{R} : \Sigma^{*} \to \Sigma^{*}$ with $w^{R} = w[|w|] \dots w[1]$ with the *i*th letter w[i] of w

Lemma

- $\bigcirc \text{ ScatFact}(\overline{w}) = \{\overline{u} \mid u \in \text{ScatFact}(w)\}\$
- ScatFact(w^R) = { u^R | $u \in ScatFact(w)$ }

Corollary

The cardinalities of the spectra (and k-spectra) of w*,* w^R *, and* \overline{w} *are the same:*

$$|\operatorname{ScatFact}_k(w)| = |\operatorname{ScatFact}_k(w^R)| = |\operatorname{ScatFact}_k(\overline{w})|.$$

Pecularities of Restriction to Cardinalities

Corollary

The cardinalities of the spectra (and k-spectra) of w*,* w^R *, and* \overline{w} *are the same:*

$$|\operatorname{ScatFact}_k(w)| = |\operatorname{ScatFact}_k(w^R)| = |\operatorname{ScatFact}_k(\overline{w})|.$$

a < b assumed: only consider the lexicographically smallest element in such a equivalence class

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Proof:

○ all $a^r b^s$ for r + s = n - 1 are the scattered factors of length n - 1

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Proof:

○ all $a^r b^s$ for r + s = n - 1 are the scattered factors of length n - 1

 \bigcirc *n* possibilities

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Corollary

 $S_n = \{a^r b^s | r + s = n \in \mathbb{N}\}$ is a scattered factor set for all $n \in \mathbb{N}$.

Given $k, n \in \mathbb{N}$ with $n - 1 \le k$ set c = k - n + 1 and consider $w = a^k b^{k-c}$. Then for all $i \in [c]_0$ the (k - i)-spectrum of w has cardinality n.

Given $k, n \in \mathbb{N}$ with $n - 1 \le k$ set c = k - n + 1 and consider $w = a^k b^{k-c}$. Then for all $i \in [c]_0$ the (k - i)-spectrum of w has cardinality n.

Proof:

- i = 0: $a^r b^s$ with $r + s = k \rightsquigarrow k c + 1 = n$ possibilities
- $i \neq 0$: all the scattered factor are just *shortened* for the (k i)-spectra

○ Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.

k-Spectra of c-Balanced Words

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- \bigcirc *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- which scattered factor sets have cardinality $n \in \mathbb{N}$

k-Spectra of c-Balanced Words

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- which scattered factor sets have cardinality $n \in \mathbb{N}$
- for a fixed $c \in \mathbb{N}$ and *c*-balanced words: which cardinalities are *reachable*

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- \bigcirc which scattered factor sets have cardinality $n \in \mathbb{N}$
- for a fixed $c \in \mathbb{N}$ and *c*-balanced words: which cardinalities are *reachable*

We were not happy! We would like to fully characterise for given *c* and word-length which cardinalities are reachable.

For $w \in \Sigma^*$ and $k, c \in \mathbb{N}_0$ with $c \leq k$ we have

$$\forall i \in [c]_0 : |\text{ScatFact}_{k-i}(w)| = k - c + 1 \quad iff \quad w = a^k b^{k-c}$$

Moreover $|\text{ScatFact}_{k-i}(w)| \ge k - c + 1$ for all $i \in [c]_0$

For $w \in \Sigma^*$ and $k, c \in \mathbb{N}_0$ with $c \leq k$ we have

$$\forall i \in [c]_0 : |\operatorname{ScatFact}_{k-i}(w)| = k - c + 1 \quad iff \quad w = \mathsf{a}^k \mathsf{b}^{k-c}.$$

Moreover $|\text{ScatFact}_{k-i}(w)| \ge k - c + 1$ for all $i \in [c]_0$

Proof idea for remaining part:

○ suppose $w \neq a^k b^{k-c}$ (neither one of the symmetric cases)

 $\bigcirc \Rightarrow w = w_1 a b a w_2$

 \bigcirc induction on word-length

k-spectra for strictly balanced words of length 2k

Properties of strictly balanced words

\bigcirc same amount of as and bs

- \bigcirc same amount of as and bs
- always even length

k-Spectra of c-Balanced Words

- \bigcirc same amount of as and bs
- always even length
- \bigcirc the *k*-spectra has at most 2^{*k*} elements

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2^k iff $w \in \{ab, ba\}^k$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2^k \Leftrightarrow w \in \{\operatorname{ab}, \operatorname{ba}\}^k.$$

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2^k iff $w \in \{ab, ba\}^k$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2^k \Leftrightarrow w \in {ab, ba}^k.$$

Sketch of Proof:

k-Spectra of c-Balanced Words

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2^k iff $w \in \{ab, ba\}^k$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2^k \Leftrightarrow w \in {ab, ba}^k.$$

Sketch of Proof:

○ "⇒" contraposition; if aa is a factor of w then one b^{*r*} a^{*k*-*r*} is not a scattered factor

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2^k iff $w \in \{ab, ba\}^k$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2^k \Leftrightarrow w \in {ab, ba}^k.$$

Sketch of Proof:

 "⇒" contraposition; if aa is a factor of w then one b^ra^{k-r} is not a scattered factor

 \bigcirc " \Leftarrow " induction

Spectrum of *k*-spectra

k-Spectra of *c*-Balanced Words

Proof for " $|\text{ScatFact}_k(w)| = k + 1$ iff $w = a^k b^k$ gives also that k + 2 is not reachable!

Proof for " $|\text{ScatFact}_k(w)| = k + 1$ iff $w = a^k b^k$ gives also that k + 2 is not reachable!

if the as and bs are not nicely ordered we have at least one switch from b to a

k-Spectra of c-Balanced Words

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2k iff w is either $a^{k-1}bab^{k-1}$ or $a^{k-1}b^ka$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2k \Leftrightarrow w \in \{a^{k-1}bab^{k-1}, a^{k-1}b^ka\}.$$

A LING

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a strictly balanced word $w \in \Sigma^*$ has cardinality 2k iff w is either $a^{k-1}bab^{k-1}$ or $a^{k-1}b^ka$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2k \Leftrightarrow w \in \{a^{k-1}bab^{k-1}, a^{k-1}b^ka\}.$$

Our proof also shows

○ If *w* is neither $a^k b^k$ nor $a^{k-1}bab^{k-1}$ nor $a^{k-1}b^k a$, then the cardinality is greater than 2k

Spectrum of *k*-spectra

 $a^{k-1}b^k$ a generalisable to $a^{k-i}b^ka^i$ for $i \in \left\lfloor \lfloor \frac{k}{2} \rfloor \right]$:

$$|\operatorname{ScatFact}_k(\mathsf{a}^{k-i}\mathsf{b}^k\mathsf{a}^i)| = k(i+1) - i^2 + 1$$

k-Spectra of *c*-Balanced Words

Spectrum of *k*-spectra

 $a^{k-1}b^k$ a generalisable to $a^{k-i}b^ka^i$ for $i \in \left\lfloor \lfloor \frac{k}{2} \rfloor \right\rfloor$:

$$|$$
ScatFact_k $(a^{k-i}b^ka^i)| = k(i+1) - i^2 + 1$

Promising news: the *k*-spectra of strictly balanced words cannot have cardinality 2k + i for $i \in [k - 4]$

Promising news: the *k*-spectra of strictly balanced words cannot have cardinality 2k + i for $i \in [k - 4]$

Raised hope: gap between $(i + 1)k - i^2 + 1$ and $(i + 2)k - (i + 1)^2 + 1$

Raised hope: gap between $(i + 1)k - i^2 + 1$ and $(i + 2)k - (i + 1)^2 + 1$

but (unfortunately)

Raised hope: gap between $(i + 1)k - i^2 + 1$ and $(i + 2)k - (i + 1)^2 + 1$

but (unfortunately)

Lemma

The k-spectrum of $a^{k-1}b^2ab^{k-2}$ has exactly 3k - 2 elements.

Raised hope: gap between $(i + 1)k - i^2 + 1$ and $(i + 2)k - (i + 1)^2 + 1$

but (unfortunately)

Lemma

The k-spectrum of $a^{k-1}b^2ab^{k-2}$ has exactly 3k - 2 elements.

and this result is generalisable

Lemma

For
$$k \ge 5$$
 and $i \in [k-1]$
 $\bigcirc |\text{ScatFact}_k(a^{k-2}b^iab^{k-i}a)| = k(2i+2) - 6i+2$
 $\bigcirc |\text{ScatFact}_k(a^{k-2}b^ia^2b^{k-i})| = k(2i+1) - 4i+2$

k-Spectra of *c*-Balanced Words

$$k \ge 38$$

$$3k - 3 - 4k - 8 - 5k - 15 - 6k - 24 - 7k - 35 - 8k - 48 - 10 - 7k - 10 - 8k - 16 - 10 - 7k - 10 - 8k - 16 - 16 - 10 - 7k - 10 - 8k - 16 - 16 - 10 - 7k - 10 - 8k - 16 - 16 - 10 - 7k - 10 - 8k - 16 - 10 - 7k - 10 - 7k$$

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

k-Spectra of c-Balanced Words

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

Lemma

The k-spectrum of w has cardinality $2^k - 1$ iff $w = (ab)^i a^2 b^2 (ab)^{k-i-2}$ for some $i \in [k-2]$.

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

Lemma

The k-spectrum of w has cardinality $2^k - 1$ iff $w = (ab)^i a^2 b^2 (ab)^{k-i-2}$ for some $i \in [k-2]$.

Proof:

 \bigcirc "=" \checkmark

○ "⇒" if there is a scattered factor not of the form $b^{i+1}a^{k-i-1}$ then less than $2^k - 1$ element are in the *k*-spectrum

Overview for strictly balanced words

