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Scattered Factors

informal: deleting arbitrary letters from a word (preserving the
order) results in a scattered factor of this word
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informal: deleting arbitrary letters from a word (preserving the
order) results in a scattered factor of this word

EXAMPLE
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Scattered Factors

informal: deleting arbitrary letters from a word (preserving the
order) results in a scattered factor of this word

Definition (Scattered Factor, (Scattered) Subword)
v � v1 . . . vn ∈ Σ∗ scattered factor of w iff

∃u0 . . . un ∈ Σ∗ : w � u0v1u1 . . . un−1vn un .
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k-Spectra

Definition

# set of all scattered factors of w is the spectrum ScatFact(w)

# set of all scattered factors of w of length k is the k-spectrum
ScatFactk(w)
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k-Spectra

Definition

# set of all scattered factors of w is the spectrum ScatFact(w)
# set of all scattered factors of w of length k is the k-spectrum

ScatFactk(w)

Example: abba

{abba} 4-spectrum
{aba, bba, abb} 3-spectrum
{aa, ab, bb, ba} 2-spectrum
{a, b} 1-spectrum
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k-Spectra

Definition

# set of all scattered factors of w is the spectrum ScatFact(w)
# set of all scattered factors of w of length k is the k-spectrum

ScatFactk(w)

We are not considering multisets.
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Open Problems

Problem
Given S ⊆ Σ∗ decide whether S is the spectrum of some word w.
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Open Problems

Problem
Given S ⊆ Σ∗ decide whether S is the spectrum of some word w.

Problem
Given a k-spectrum decide whether it is independent, e.g.
{ab, ba, aa} is not independent since aa can be deduced from ab

and ba.
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Open Problems

Problem
Given S ⊆ Σ∗ decide whether S is the spectrum of some word w.

Problem
Given a k-spectrum decide whether it is independent, e.g.
{ab, ba, aa} is not independent since aa can be deduced from ab

and ba.

Problem
Determine the index of the equivalence relation that relates word with
the same spectrum.
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Middle Step Between S and w

k-Spectra of c-Balanced Words
k-Spectra



Middle Step Between S and w
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Reformulated Problem

Problem
Decide for a given n ∈ N whether there exists w ∈ Σ∗ and k ∈ N

with | ScatFactk(w)| � n.
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Reformulated Problem

Problem
Decide for a given n ∈ N whether there exists w ∈ Σ∗ and k ∈ N

with | ScatFactk(w)| � n.

or more restricted:
Problem
Decide for given n , k ∈ N whether there exists w ∈ Σ∗ with
| ScatFactk(w)| � n.
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Reformulated Problem

Problem
Decide for a given n ∈ N whether there exists w ∈ Σ∗ and k ∈ N

with | ScatFactk(w)| � n.

or more restricted:
Problem
Decide for given n , k ∈ N whether there exists w ∈ Σ∗ with
| ScatFactk(w)| � n.

To start with we only consider a binary alphabet Σ � {a, b}.
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Examples

# n � 3, k � 2: w � aabb

# n � k + 2, k ∈ N>2, |w |a � |w |b does not have a solution
# n � 2k , k ∈ N: w � (ab)k

# n square number at least 4: k :� 2(
√

n − 1), w � a
k
2 bka

k
2
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c-balanced words

Definition
Binary word w ∈ {a, b}∗ c-balanced for a c ∈ N0 iff

| |w |a − |w |b | � c.

# c � 1: w balanced
# c � 0: w strictly balanced
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c-balanced words

Definition
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c-balanced words

Definition
Binary word w ∈ {a, b}∗ c-balanced for a c ∈ N0 iff

| |w |a − |w |b | � c.

# c � 1: w balanced
# c � 0: w strictly balanced

Obviously for every w ∈ {a, b} exists c ∈ N0 such that w is
c-balanced.
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Pecularities of Restriction to Cardinalities

Example: 3-spectrum

abbab baaba babba abaab

aaa aaa

aab aab aab

aba aba aba aba

abb abb abb

baa baa baa

bab bab bab bab

bba bba bba

bbb bbb

6 6 6 6
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Pecularities of Restriction to Cardinalities

Example: 3-spectrum

abbab baaba babba abaab

aaa aaa
aab aab aab
aba aba aba aba
abb abb abb

baa baa baa
bab bab bab bab
bba bba bba
bbb bbb

6 6 6 6

renaming reverse both
abbab baaba babba abaab

aab bba baa abb

aba bab aba bab

abb baa bba aab

bab aba bab aba

bba aab abb baa

bbb aaa bbb aaa

6 6 6 6
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Renaming and Reversing

Definition

# · : Σ→ Σwith a � b and b � a renaming morphism

# ·R : Σ∗ → Σ∗ with wR � w[|w |] . . .w[1]with the ith letter
w[i] of w
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Renaming and Reversing

Definition

# · : Σ→ Σwith a � b and b � a renaming morphism
# ·R : Σ∗ → Σ∗ with wR � w[|w |] . . .w[1]with the ith letter

w[i] of w

Lemma

# ScatFact(w) � {u | u ∈ ScatFact(w)}

# ScatFact(wR) � {uR | u ∈ ScatFact(w)}
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Renaming and Reversing

Definition

# · : Σ→ Σwith a � b and b � a renaming morphism
# ·R : Σ∗ → Σ∗ with wR � w[|w |] . . .w[1]with the ith letter

w[i] of w

Lemma
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Pecularities of Restriction to Cardinalities

Corollary

The cardinalities of the spectra (and k-spectra) of w, wR, and w are
the same:

| ScatFactk(w)| � | ScatFactk(wR)| � | ScatFactk(w)|.
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Pecularities of Restriction to Cardinalities

Corollary

The cardinalities of the spectra (and k-spectra) of w, wR, and w are
the same:

| ScatFactk(w)| � | ScatFactk(wR)| � | ScatFactk(w)|.

a < b assumed: only consider the lexicographically smallest
element in such a equivalence class
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Solving the first problem

Theorem
For all n ∈ N the k-spectrum of w � akbk for k � n − 1 has n
elements, i.e. | ScatFactn−1(an−1bn−1)| � n.
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Solving the first problem

Theorem
For all n ∈ N the k-spectrum of w � akbk for k � n − 1 has n
elements, i.e. | ScatFactn−1(an−1bn−1)| � n.

Proof:

# all arbs for r + s � n − 1 are the scattered factors of length
n − 1

# n possibilities �
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Theorem
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Solving the first problem

Theorem
For all n ∈ N the k-spectrum of w � akbk for k � n − 1 has n
elements, i.e. | ScatFactn−1(an−1bn−1)| � n.

Corollary

Sn � {arbs | r + s � n ∈ N} is a scattered factor set for all n ∈ N.
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Partly Solving the Second Problem

Theorem
Given k , n ∈ N with n − 1 ≤ k set c � k − n + 1 and consider
w � akbk−c . Then for all i ∈ [c]0 the (k − i)-spectrum of w has
cardinality n.
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Partly Solving the Second Problem

Theorem
Given k , n ∈ N with n − 1 ≤ k set c � k − n + 1 and consider
w � akbk−c . Then for all i ∈ [c]0 the (k − i)-spectrum of w has
cardinality n.

Proof:

# i � 0: arbs with r + s � k { k − c + 1 � n possibilities
# i , 0: all the scattered factor are just shortened for the
(k − i)-spectra
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Are we happy now?

# Given n ∈ N for each c we have c + 1 different sets being a
spectrum of cardinality n.

# k-spectrum of w � a2b4a2 has cardinality 9
# abba is a scattered factor of w and not in the

aforementioned sets
# which scattered factor sets have cardinality n ∈ N
# for a fixed c ∈ N and c-balanced words: which cardinalities

are reachable
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Are we happy now?

# Given n ∈ N for each c we have c + 1 different sets being a
spectrum of cardinality n.

# k-spectrum of w � a2b4a2 has cardinality 9
# abba is a scattered factor of w and not in the

aforementioned sets
# which scattered factor sets have cardinality n ∈ N
# for a fixed c ∈ N and c-balanced words: which cardinalities

are reachable

We were not happy! We would like to fully characterise for
given c and word-length which cardinalities are reachable.

k-Spectra of c-Balanced Words
k-Spectra



Minimal Cardinality

Lemma
For w ∈ Σ∗ and k , c ∈ N0 with c ≤ k we have

∀i ∈ [c]0 : | ScatFactk−i(w)| � k − c + 1 iff w � akbk−c .

Moreover | ScatFactk−i(w)| ≥ k − c + 1 for all i ∈ [c]0
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Minimal Cardinality

Lemma
For w ∈ Σ∗ and k , c ∈ N0 with c ≤ k we have

∀i ∈ [c]0 : | ScatFactk−i(w)| � k − c + 1 iff w � akbk−c .

Moreover | ScatFactk−i(w)| ≥ k − c + 1 for all i ∈ [c]0

Proof idea for remaining part:

# suppose w , akbk−c (neither one of the symmetric cases)
# ⇒ w � w1abaw2

# induction on word-length
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k-SPECTRA FOR STRICTLY BALANCED
WORDS OF LENGTH 2k



Properties of strictly balanced words

# same amount of as and bs

# always even length
# the k-spectra has at most 2k elements
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Reaching the Maximal Cardinality

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w ∈ {ab, ba}k , i.e.

| ScatFactk(w)| � 2k ⇔ w ∈ {ab, ba}k .
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Reaching the Maximal Cardinality

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w ∈ {ab, ba}k , i.e.

| ScatFactk(w)| � 2k ⇔ w ∈ {ab, ba}k .

Sketch of Proof:

# "⇒" contraposition; if aa is a factor of w then one brak−r is
not a scattered factor

# "⇐" induction

k-Spectra of c-Balanced Words
k-Spectra



Reaching the Maximal Cardinality

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w ∈ {ab, ba}k , i.e.

| ScatFactk(w)| � 2k ⇔ w ∈ {ab, ba}k .

Sketch of Proof:

# "⇒" contraposition; if aa is a factor of w then one brak−r is
not a scattered factor

# "⇐" induction

k-Spectra of c-Balanced Words
k-Spectra



Reaching the Maximal Cardinality

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w ∈ {ab, ba}k , i.e.
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Spectrum of k-spectra

?
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Spectrum of k-spectra

?

Proof for "| ScatFactk(w)| � k + 1 iff w � akbk gives also that
k + 2 is not reachable!
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?

Proof for "| ScatFactk(w)| � k + 1 iff w � akbk gives also that
k + 2 is not reachable!
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Jumbling a and b: akbk→ (ab)k

if the as and bs are not nicely ordered we have at least one
switch from b to a
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Jumbling a and b: akbk→ (ab)k

if the as and bs are not nicely ordered we have at least one
switch from b to a

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w is either ak−1babk−1 or ak−1bka, i.e.

| ScatFactk(w)| � 2k ⇔ w ∈ {ak−1babk−1 , ak−1bka}.
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Jumbling a and b: akbk→ (ab)k

if the as and bs are not nicely ordered we have at least one
switch from b to a

Lemma
The k-spectrum of a strictly balanced word w ∈ Σ∗ has cardinality
2k iff w is either ak−1babk−1 or ak−1bka, i.e.

| ScatFactk(w)| � 2k ⇔ w ∈ {ak−1babk−1 , ak−1bka}.

Our proof also shows

# If w is neither akbk nor ak−1babk−1 nor ak−1bka, then the
cardinality is greater than 2k
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Spectrum of k-spectra

first gap

?
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Spectrum of k-spectra

first gap

?

ak−1bka generalisable to ak−ibkai for i ∈
[
b k

2 c
]
:

| ScatFactk(ak−ibkai)| � k(i + 1) − i2
+ 1
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Spectrum of k-spectra

first gap ?? ?
...

...

ak−1bka generalisable to ak−ibkai for i ∈
[
b k

2 c
]
:

| ScatFactk(ak−ibkai)| � k(i + 1) − i2
+ 1
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Spectrum of k-spectra

first gap ?? ?
...

...

Promising news: the k-spectra of strictly balanced words
cannot have cardinality 2k + i for i ∈ [k − 4]
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Spectrum of k-spectra

first gap second gap ??
...

...

Promising news: the k-spectra of strictly balanced words
cannot have cardinality 2k + i for i ∈ [k − 4]
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The third gap . . .

Raised hope: gap between (i + 1)k − i2 + 1 and (i + 2)k − (i + 1)2 + 1
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The third gap . . .

Raised hope: gap between (i + 1)k − i2 + 1 and (i + 2)k − (i + 1)2 + 1

but (unfortunately)
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The third gap . . .

Raised hope: gap between (i + 1)k − i2 + 1 and (i + 2)k − (i + 1)2 + 1

but (unfortunately)

Lemma

The k-spectrum of ak−1b2abk−2 has exactly 3k − 2 elements.
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The third gap . . .

Raised hope: gap between (i + 1)k − i2 + 1 and (i + 2)k − (i + 1)2 + 1

but (unfortunately)

Lemma

The k-spectrum of ak−1b2abk−2 has exactly 3k − 2 elements.

and this result is generalisable
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The Thing in the "Gap"

Lemma
For k ≥ 5 and i ∈ [k − 1]
# | ScatFactk(ak−2biabk−ia)| � k(2i + 2) − 6i + 2
# | ScatFactk(ak−2bia2bk−i)| � k(2i + 1) − 4i + 2
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Spectrum of k-spectra

...
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The other end of the spectrum

We saw already that the cardinality 2k is reached iff w � (ab)k .
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The other end of the spectrum

We saw already that the cardinality 2k is reached iff w � (ab)k .

Lemma
The k-spectrumof w has cardinality 2k−1 iff w � (ab)ia2b2(ab)k−i−2

for some i ∈ [k − 2].
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The other end of the spectrum

We saw already that the cardinality 2k is reached iff w � (ab)k .

Lemma
The k-spectrumof w has cardinality 2k−1 iff w � (ab)ia2b2(ab)k−i−2

for some i ∈ [k − 2].

Proof:

# "⇐"
√

# "⇒" if there is a scattered factor not of the form bi+1ak−i−1

then less than 2k − 1 element are in the k-spectrum
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Overview for strictly balanced words

4

8

7
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