RIGIDITY FOR SOME DYNAMICAL SYSTEMS OF ARITHMETIC ORIGIN

S. Ferenczi, P. Hubert

THE QUESTION OF RIGIDITY

Rejidity = there exists a sequence $q_n \rightarrow \infty$ such that for any measurable set

 $\mu(T^{q_n}A\Delta A)\to \mathbf{0}.$

Veech (1982) : almost all interval exchanges are rigid.

Examples of <u>non-rigid</u> iet were known only for <u>3</u> intervals. Until Robertson (2017) and the square-tiled interval exchanges of F-H. (2016-17)

A THREE-INTERVAL EXCHANGE

Take the rotation $Rx = x + \alpha$ modulo 1 and mark a point β .

THE EXAMPLE OF VEECH 1969

 $T(x,s) = (Rx, \sigma_0 s) \text{ if } x \text{ is in the interval } [0, \beta[\times\{s\}, \text{ assimilated with } [s-1, s-1+\beta[, T(x,s) = (Rx, \sigma_1 s) \text{ if } x \text{ is in the interval } [\beta, 1[\times\{s\}, \text{ assimilated with } [s-1+\beta, s[, T(x,s) = (Rx, \sigma_1 s) \text{ if } x \text{ is in the interval } [\beta, 1[\times\{s\}, \text{ assimilated with } [s-1+\beta, s[, T(x,s) = (Rx, \sigma_1 s) \text{ if } x \text{ is in the interval } [\beta, 1[\times\{s\}, \text{ assimilated with } [s-1+\beta, s[, T(x,s) = (Rx, \sigma_1 s) \text{ if } x \text{ is in the interval } [\beta, 1[\times\{s\}, 1[x], s]) \text{ if } x \text{ is in the interval } [\beta, 1[x], s] \text{ is in the interval } [\beta, 1[x],$

Thus the image intervals are

GENERALIZED VEECH

We start from R, mark several points β_i , use permutations on $\{1, \dots, d\}$, take d copies of the interval [0, 1[. Optionally, change permutations at $1 - \alpha$, like in square-tiled iet.

GRAND UNIFICATION

We take α irrational, $0 = \beta_0 < \beta_1 < ... \beta_t < 1 - \alpha < \beta_{t+1} < ... \beta_r < \beta_{r+1} = 1$, σ_0 , ..., σ_r , τ , permutations of $\{1, ... d\}$.

 $Rx = x + \alpha$ modulo 1.

$$T(x,s) = (x,\sigma_j s) \text{ if } \beta_j \leqslant x < \beta_{j+1}, \ j \neq t,$$

$$T(x,s) = (x,\sigma_t s) \text{ if } \beta_t \leqslant x < 1 - \alpha,$$

$$T(x,s) = (x,\tau s) \text{ if } 1 - \alpha \leqslant x < \beta_{t+1}.$$

Non-triviality conditions : $\sigma_j \neq \sigma_{j+1}$, $0 \leq j \leq r-1$, $j \neq t$; $\tau \neq \sigma_{t+1}$; $\sigma_t \sigma_r \neq \tau \sigma_0$.

SYMBOLIC SYSTEMS

Symbolic system = the shift on infinite sequences on a finite alphabet.

Trajectories = $y_n = s_i$ if $T^n y$ falls into the *i*-th interval in the *s*-th copy of [0, 1[.

A trajectory of T gives a trajectory of $R: u \to \phi(u)$ by $s_i \to i$, for all i, s.

Linear recurrence of the coding = in the language of trajectories of R, every word of length n occurs in every word of length Kn.

FIRST RESULT

Theorem 1. Under the non-triviality conditions and <u>minimality</u>, T is rigid (for any ergodic invariant measure) if α has unbounded partial quotients, T is uniquely ergodic and non-rigid if the coding of R by the partition determined by $\beta_1, ..., \beta_t, 1 - \alpha, \beta_{t+1}, ..., \beta_r$ is linearly recurrent.

Proofs as for square-tiled iet :

- an iet with LR behaves as a rotation with BPQ,
- when the non-triviality conditions are satisfied on every letter (ex : Veech 1969), T satisfies \overline{d} -separation,
- otherwise, average \overline{d} -separation.

MINIMALITY

For Veech 1969, it was known that if β is not in $\mathbb{Z}(\alpha)$, T is minimal. **Theorem 2.** T is minimal if and only if

$$1 \pm \beta = 2m\alpha + 2n$$

for some $m \in \mathbb{Z}$, $n \in \mathbb{Z}$.

For the generalizations, we take all the β_i and $\beta_i - \beta_j$ not in $\mathbb{Z}(\alpha)$. **Proposition 1.** An NCS for minimality is that no strict subset of $\{1 \dots d\}$ is invariant by all the σ_i and τ .

THE GREY ZONE AND OSTROWSKI

Case where α has bounded partial quotients but the coding of R is <u>NOT</u> linearly recurrent.

Let α be given, a_n its partial quotients : we use a form of alternating Ostrowski expansion of each β_i by α , giving integers $0 \leq b_n(\beta_i) \leq a_n$. The Markov condition is $b_n = a_n$ implies $b_{n+1} = 0$.

The integer $b_{n+1}(\beta_i)$ tells us in which <u>column</u> is β_i for the *n*-th <u>Rokhlin tower</u> of the rotation *R*.

ROKHLIN TOWERS

n is fixed $a = a_{n+1}$ $r = |q_n \alpha - p_n|$ $l = |q_{n-1} \alpha - p_{n-1}|$ $l' = |q_{n+1} \alpha - p_{n+1}|$ Then, up to the symmetry $x \to -x$, we have two towers.

BPQ BUT NOT LR

Proposition 2. For α with BPQ, the coding of R is NOT LR if and only if

— either there exists *i* and pairs M, N with N-M arbitrarily large and $b_m(\beta_i) = a_m - 1$ for $M \leq m \leq N$,

 eta_i is close to lpha

- or there exists *i* and pairs M, N with N-M arbitrarily large and $(b_m(\beta_i), b_{m+1}(\beta_i)) = (a_m, 0)$ for each $M \leq m = M + 2p \leq N$, β_i is close to α (via 0)

- or there exist $i \neq j$ and pairs M, N with N-M arbitrarily large and $b_m(\beta_j) = b_m(\beta_i)$ for $M \leq m \leq N$. $\underline{\beta_i}$ is close to β_j

IN THE GREY ZONE

NON-RIGID NON-LR

Theorem 3. If, whenever there is a run of m as in Proposition 1, either no β_i comes close to α , or there exists β_j such that no β_k , $k \neq j$, comes close to β_j , then T is not rigid.

This gives the first examples of not rigid not LR iet.

SO MANY SHADES OF GREY

Theorem 4. Suppose $\sigma_k \sigma_j = \sigma_j \sigma_k$ for all $j, k, \tau = \sigma_t$. If infinitely often all the β_i come close to α at the same time, then T is rigid.

This applies to Veech 1969, where d = 2: in the grey zone T is rigid.

Proposition 3. If there exist pairs M, N with N - M arbitrarily large, such that for all i either $b_m(\beta_i) = a_m - 1$ for $M \leq m \leq N$, or $(b_m(\beta_i), b_{m+1}(\beta_i)) = (a_m, 0)$ for each even $M \leq m \leq N$, $a_{N-1} \neq 1$ and $a_N \neq 1$, then T is rigid.

(Work in progress). When infinitely often all the β_i come close to α at the same time, if Theorem 3 or 4 do not apply, and α is the golden ratio, we can build rigid and non-rigid examples.

RIGID LR

An interval exchange with a circular permutation is a rotation, thus is rigid, even if it is LR.

The Arnoux-Yoccoz interval exchange is semi-conjugate to a rotation of the 2- torus, which is rigid.

The measure-theoretic isomorphism between Arnoux-Yoccoz and the rotation, announced by Arnoux - Bernat - Bressaud (2011), was proved by Cassaigne (2018).

Thus Arnoux - Yoccoz is LR (self-induced, even) and rigid.