# RIGIDITY FOR SOME DYNAMICAL SYSTEMS OF ARITHMETiC ORIGIN 

S. Ferenczi, P. Hubert

## THE QUESTION OF RIGIDITY

$\underline{\text { Rgidity }}=$ there exists a sequence $q_{n} \rightarrow \infty$ such that for any measurable set
$\mu\left(T^{q_{n}} A \Delta A\right) \rightarrow 0$.

Veech (1982) : almost all interval exchanges are rigid.

Examples of non-rigid iet were known only for 3 intervals. Until Robertson (2017) and the square-tiled interval exchanges of F-H. (2016-17)

## A THREE-INTERVAL EXCHANGE

Take the rotation $R x=x+\alpha$ modulo 1 and mark a point $\beta$.


## THE EXAMPLE OF VEECH 1969

$T(x, s)=\left(R x, \sigma_{0} s\right)$ if $x$ is in the interval $[0, \beta[\times\{s\}$, assimilated with $[s-1, s-1+\beta[$,
$T(x, s)=\left(R x, \sigma_{1} s\right)$ if $x$ is in the interval $[\beta, 1[\times\{s\}$, assimilated with $[s-1+\beta, s[$,


Thus the image intervals are


## GENERALIZED VEECH

We start from $R$, mark several points $\beta_{i}$, use permutations on $\{1, \ldots d\}$, take $d$ copies of the interval $[0,1[$. Optionally, change permutations at $1-\alpha$, like in square-tiled iet.


## GRAND UNIFICATION

We take $\alpha$ irrational, $0=\beta_{0}<\beta_{1}<\ldots \beta_{t}<1-\alpha<\beta_{t+1}<\ldots \beta_{r}<\beta_{r+1}=1, \sigma_{0}$, $\ldots, \sigma_{r}, \tau$, permutations of $\{1, \ldots d\}$.
$R x=x+\alpha$ modulo 1.
$T(x, s)=\left(x, \sigma_{j} s\right)$ if $\beta_{j} \leqslant x<\beta_{j+1}, j \neq t$,
$T(x, s)=\left(x, \sigma_{t} s\right)$ if $\beta_{t} \leqslant x<1-\alpha$,
$T(x, s)=(x, \tau s)$ if $1-\alpha \leqslant x<\beta_{t+1}$.

Non-triviality conditions: $\sigma_{j} \neq \sigma_{j+1}, 0 \leqslant j \leqslant r-1, j \neq t ; \tau \neq \sigma_{t+1} ; \sigma_{t} \sigma_{r} \neq \tau \sigma_{0}$.

## SYMBOLIC SYSTEMS

Symbolic system $=$ the shift on infinite sequences on a finite alphabet.
$\underline{\text { Trajectories }}=y_{n}=s_{i}$ if $T^{n} y$ falls into the $i$-th interval in the $s$-th copy of $[0,1[$.

A trajectory of $T$ gives a trajectory of $R: u \rightarrow \phi(u)$ by $s_{i} \rightarrow i$, for all $i, s$.

Linear recurrence of the coding $=$ in the language of trajectories of $R$, every word of length $n$ occurs in every word of length $K n$.

## FIRST RESULT

Theorem 1. Under the non-triviality conditions and minimality, $T$ is rigid (for any ergodic invariant measure) if $\alpha$ has unbounded partial quotients, $T$ is uniquely ergodic and nonrigid if the coding of $R$ by the partition determined by $\beta_{1}, \ldots, \beta_{t}, 1-\alpha, \beta_{t+1}, \ldots, \beta_{r}$ is linearly recurrent.

Proofs as for square-tiled iet :

- an iet with LR behaves as a rotation with BPQ,
- when the non-triviality conditions are satisfied on every letter (ex : Veech 1969), T satisfies $\bar{d}$-separation,
— otherwise, average $\bar{d}$-separation.


## MINIMALITY

For Veech 1969, it was known that if $\beta$ is not in $\mathbb{Z}(\alpha), T$ is minimal.
Theorem 2. $T$ is minimal if and only if

$$
1 \pm \beta=2 m \alpha+2 n
$$

for some $m \in \mathbb{Z}, n \in \mathbb{Z}$.

For the generalizations, we take all the $\beta_{i}$ and $\beta_{i}-\beta_{j}$ not in $\mathbb{Z}(\alpha)$.
Proposition 1. An NCS for minimality is that no strict subset of $\{1 \ldots d\}$ is invariant by all the $\sigma_{i}$ and $\tau$.

## THE GREY ZONE AND OSTROWSKI

Case where $\alpha$ has bounded partial quotients but the coding of $R$ is NOT linearly recurrent.

Let $\alpha$ be given, $a_{n}$ its partial quotients: we use a form of alternating Ostrowski expansion of each $\beta_{i}$ by $\alpha$, giving integers $0 \leqslant b_{n}\left(\beta_{i}\right) \leqslant a_{n}$. The Markov condition is $b_{n}=a_{n}$ implies $b_{n+1}=0$.

The integer $b_{n+1}\left(\beta_{i}\right)$ tells us in which column is $\beta_{i}$ for the $n$-th Rokhlin tower of the rotation $R$.

## ROKHLIN TOWERS

$n$ is fixed $\quad a=a_{n+1} \quad r=\left|q_{n} \alpha-p_{n}\right| \quad l=\left|q_{n-1} \alpha-p_{n-1}\right| l^{\prime}=\left|q_{n+1} \alpha-p_{n+1}\right|$
Then, up to the symmetry $x \rightarrow-x$, we have two towers.


## BPQ BUT NOT LR

Proposition 2. For $\alpha$ with BPQ, the coding of $R$ is NOT LR if and only if

- either there exists $i$ and pairs $M, N$ with $N-M$ arbitrarily large and $b_{m}\left(\beta_{i}\right)=a_{m}-1$ for $M \leqslant m \leqslant N$,
$\beta_{i}$ is close to $\alpha$
- or there exists $i$ and pairs $M, N$ with $N-M$ arbitrarily large and $\left(b_{m}\left(\beta_{i}\right), b_{m+1}\left(\beta_{i}\right)\right)=$ $\left(a_{m}, 0\right)$ for each $M \leqslant m=M+2 p \leqslant N$,
$\beta_{i}$ is close to $\alpha$ (via 0 )
- or there exist $i \neq j$ and pairs $M, N$ with $N-M$ arbitrarily large and $b_{m}\left(\beta_{j}\right)=b_{m}\left(\beta_{i}\right)$ for $M \leqslant m \leqslant N$.
$\beta_{i}$ is close to $\beta_{j}$


## IN THE GREY ZONE



## NON-RIGID NON-LR

Theorem 3. If, whenever there is a run of $m$ as in Proposition 1, either no $\beta_{i}$ comes close to $\alpha$, or there exists $\beta_{j}$ such that no $\beta_{k}, k \neq j$, comes close to $\beta_{j}$, then $T$ is not rigid.

This gives the first examples of not rigid not $L R$ iet.

## SO MANY SHADES OF GREY

Theorem 4. Suppose $\sigma_{k} \sigma_{j}=\sigma_{j} \sigma_{k}$ for all $j, k, \tau=\sigma_{t}$. If infinitely often all the $\beta_{i}$ come close to $\alpha$ at the same time, then $T$ is rigid.

This applies to Veech 1969, where $d=2$ : in the grey zone $T$ is rigid.

Proposition 3. If there exist pairs $M, N$ with $N-M$ arbitrarily large, such that for all $i$ either $b_{m}\left(\beta_{i}\right)=a_{m}-1$ for $M \leqslant m \leqslant N$, or $\left(b_{m}\left(\beta_{i}\right), b_{m+1}\left(\beta_{i}\right)\right)=\left(a_{m}, 0\right)$ for each even $M \leqslant m \leqslant N, a_{N-1} \neq 1$ and $a_{N} \neq 1$, then $T$ is rigid.
(Work in progress). When infinitely often all the $\beta_{i}$ come close to $\alpha$ at the same time, if Theorem 3 or 4 do not apply, and $\alpha$ is the golden ratio, we can build rigid and non-rigid examples.

## RIGID LR

An interval exchange with a circular permutation is a rotation, thus is rigid, even if it is $L R$.

The Arnoux-Yoccoz interval exchange is semi-conjugate to a rotation of the 2 - torus, which is rigid.

The measure-theoretic isomorphism between Arnoux-Yoccoz and the rotation, announced by Arnoux - Bernat - Bressaud (2011), was proved by Cassaigne (2018).

Thus Arnoux - Yoccoz is LR (self-induced, even) and rigid.

