Resynchronizing Classes of Word Relations

María Emilia Descotte ${ }^{1}$
LaBRI

17e Journées Montoises d'informatique théorique September 12th 2018

[^0]
Languages vs. relations

Languages

Relations

Languages vs. relations

Languages

- Finite monoids

Relations

- REC

Languages vs. relations

Languages

- Finite monoids
- NFA's

Relations

- REC
- REG

Languages vs. relations

Languages

- Finite monoids
- NFA's
- Regular expressions

Relations

- REC
- REG
- RAT

Languages vs. relations

Languages

- Finite monoids

11

- NFA's

11

- Regular expressions

Relations

- REC
*
- REG
in
- RAT

Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words
A synchronization of $\left(w_{1}, w_{2}\right)$ is a word over $2 \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_{i} for $i=1,2$.

Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words
A synchronization of $\left(w_{1}, w_{2}\right)$ is a word over $2 \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_{i} for $i=1,2$.

Example

$(1, a)(1, b)(2, a)$ and $(1, a)(2, a)(1, b)$ synchronize ($a b, a$).

Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words
A synchronization of $\left(w_{1}, w_{2}\right)$ is a word over $2 \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_{i} for $i=1,2$.

Example

$(1, a)(1, b)(2, a)$ and $(1, a)(2, a)(1, b)$ synchronize ($a b, a$).

Every word $w \in(\mathbf{2} \times \mathbb{A})^{*}$ is a synchronization of a unique pair $\left(w_{1}, w_{2}\right)$ that we denote $\llbracket w \rrbracket$.

$$
\llbracket(1, a)(1, b)(2, a) \rrbracket=\llbracket(1, a)(2, a)(1, b) \rrbracket=(a b, a) .
$$

Synchronized relations

Synchronizing relations
We lift this notion to languages $L \subseteq(\mathbf{2} \times \mathbb{A})^{*}$

$$
\llbracket L \rrbracket=\{\llbracket w \rrbracket \mid w \in L\}
$$

Synchronized relations

Synchronizing relations

We lift this notion to languages $L \subseteq(\mathbf{2} \times \mathbb{A})^{*}$

$$
\llbracket L \rrbracket=\{\llbracket w \rrbracket \mid w \in L\}
$$

Example
$\mathbb{A}=\{a, b\}, L=((1, a)(2, a) \cup(1, a)(2, b) \cup(1, b)(2, a) \cup(1, b)(2, b))^{*}$,

$$
\llbracket L \rrbracket=\left\{\left(w_{1}, w_{2}\right)| | w_{1}\left|=\left|w_{2}\right|\right\} .\right.
$$

C-controlled relations

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.

C-controlled relations

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.

```
C-controlled words and languages
C\subseteq\mp@subsup{\mathbf{2}}{}{*}}\mathrm{ regular
-w\in(2\times\mathbb{A}\mp@subsup{)}{}{*}\mathrm{ is C-controlled if its}
projection over 2 belongs to C}C\mathrm{ .
-L\subseteq(2\times\mathbb{A}\mp@subsup{)}{}{*}\mathrm{ is C-controlled if all}
its words are.
```


C-controlled relations

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.
C-controlled words and languages
$C \subseteq \mathbf{2}^{*}$ regular
$-w \in(2 \times \mathbb{A})^{*}$ is C-controlled if its projection over 2 belongs to C. $-L \subseteq(2 \times \mathbb{A})^{*}$ is C-controlled if all its words are.

Examples

-Every $w \in(\mathbf{2} \times \mathbb{A})^{*}$ is $\mathbf{2}^{*}$-controlled, $-(1, a)(1, b)(2, a)$ is $1^{*} 2^{*}$-controlled, $-(1, a)(2, a)(1, b)$ isn't $1^{*} 2^{*}$-controlled, $-L$ (previous slide) is $(12)^{*}$-controlled.

C-controlled relations

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.
C-controlled words and languages
$C \subseteq \mathbf{2}^{*}$ regular
$-w \in(\mathbf{2} \times \mathbb{A})^{*}$ is C-controlled if its projection over 2 belongs to C. $-L \subseteq(2 \times \mathbb{A})^{*}$ is C-controlled if all its words are.

Examples

-Every $w \in(\mathbf{2} \times \mathbb{A})^{*}$ is $\mathbf{2}^{*}$-controlled, $-(1, a)(1, b)(2, a)$ is $1^{*} 2^{*}$-controlled, $-(1, a)(2, a)(1, b)$ isn't $1^{*} 2^{*}$-controlled, $-L$ (previous slide) is (12)*-controlled.
C-controlled relations
Given a regular language $C \subseteq \mathbf{2}^{*}$
$\operatorname{REL}(C)=\{\llbracket L \rrbracket \mid L$ is reg. and C-controlled $\}$

C-controlled relations

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.
C-controlled words and languages
$C \subseteq \mathbf{2}^{*}$ regular
$-w \in(\mathbf{2} \times \mathbb{A})^{*}$ is C-controlled if its projection over 2 belongs to C. $-L \subseteq(2 \times \mathbb{A})^{*}$ is C-controlled if all its words are.

Examples

-Every $w \in(\mathbf{2} \times \mathbb{A})^{*}$ is $\mathbf{2}^{*}$-controlled, $-(1, a)(1, b)(2, a)$ is $1^{*} 2^{*}$-controlled, $-(1, a)(2, a)(1, b)$ isn't $1^{*} 2^{*}$-controlled, $-L$ (previous slide) is $(12)^{*}$-controlled.
C-controlled relations
Given a regular language $C \subseteq \mathbf{2}^{*}$
$\operatorname{ReL}(C)=\{\llbracket L \rrbracket \mid L$ is reg. and C-controlled $\}$

Examples

$-\operatorname{ReL}\left(1^{*} 2^{*}\right)=$ REC,
$-\operatorname{ReL}\left((12)^{*}\left(1^{*} \cup 2^{*}\right)\right)=$ REG,
$-\operatorname{ReL}\left(\mathbf{2}^{*}\right)=\operatorname{RAT}$.

Class Containment Problem

Class Containment Problem

Input: Two regular languages $C, D \subseteq \mathbf{2}^{*}$
Output: Is $\operatorname{ReL}(C) \subseteq \operatorname{REL}(D)$?

Class Containment Problem

Class Containment Problem

Input: Two regular languages $C, D \subseteq \mathbf{2}^{*}$ Output: Is $\operatorname{ReL}(C) \subseteq \operatorname{Rec}(D)$?

```
Examples
-If C\subseteqD, then REL}(C)\subseteq\operatorname{ReL}(D)
-REL}(\mp@subsup{1}{}{*}\mp@subsup{2}{}{*})\subseteq\operatorname{ReL}((12\mp@subsup{)}{}{*}(\mp@subsup{1}{}{*}\cup\mp@subsup{2}{}{*}))
-REL((12)* (1* \cup 2*)) \not\subseteq REL(1*2*),
-REL(1*2*) = Rel(2* 1*),
-ReL((12)*) = ReL((21)*).
```


Decidability and complexity

The problem is decidable for $\operatorname{ReL}(D)=$ REC, REG or Length-pres.

[^1]
Previous work ${ }^{2}$

Decidability and complexity

The problem is decidable for $\operatorname{ReL}(D)=$ REC, REG or Length-pres.

Resynchronization

The proof is constructive in terms of the automaton:
Given a C-controlled language L, one can effectively construct a D-controlled language L^{\prime} such that $\llbracket L \rrbracket=\llbracket L^{\prime} \rrbracket$.

[^2]
Our contribution

We prove that the Class Containment Problem is decidable for arbitrary C and D and, in case of positive answer, we give an effective method for resynchronizing relations.

Our contribution

We prove that the Class Containment Problem is decidable for arbitrary C and D and, in case of positive answer, we give an effective method for resynchronizing relations.

Proof idea

Step 1: Rewrite C and D as finite unions of simple languages.
Step 2: Characterization for simple languages.
Step 3: Induction on the amount of disjuncts in the unions.

Step 1: Decomposition into simple languages

Concat-star languages

$$
C_{1}^{*} u_{1} \cdots C_{n}^{*} u_{n}
$$

with C_{1}, \ldots, C_{n} regular languages, u_{1}, \ldots, u_{n} words.

Step 1: Decomposition into simple languages

Concat-star languages

$$
C_{1}^{*} u_{1} \cdots C_{n}^{*} u_{n}
$$

with C_{1}, \ldots, C_{n} regular languages, u_{1}, \ldots, u_{n} words.

Simple languages
Concat-star languages of star-height $1+$ extra restrictions.

Step 1: Decomposition into simple languages

Concat-star languages

$$
C_{1}^{*} u_{1} \cdots C_{n}^{*} u_{n}
$$

with C_{1}, \ldots, C_{n} regular languages, u_{1}, \ldots, u_{n} words.

Simple languages
Concat-star languages of star-height $1+$ extra restrictions.

Examples

- $1^{*}(12)^{*} 2^{*} 12$,
- (1*2)*2*11 X
- $1^{*}(12 \cup 1)^{*}(112)^{*} 1 \checkmark$
- $(12)^{*} 1^{*} \cup(12)^{*} 2^{*} X$

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of concat-star languages of star-height 1.

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite union of simple languages.

Step 2: Characterization for simple languages

Parikh ratio

$-w \in \mathbf{2}^{*} \backslash\{\varepsilon\}, \rho(w)=\frac{|w|_{1}}{|w|}$.
$-C \subseteq \mathbf{2}^{*}, \rho(C)=\{\rho(w) \mid w \in C \backslash\{\varepsilon\}\} \subseteq[0,1]_{\mathbb{Q}}$.

Step 2: Characterization for simple languages

Parikh ratio

$$
\begin{aligned}
& -w \in \mathbf{2}^{*} \backslash\{\varepsilon\}, \rho(w)=\frac{|w|_{1}}{|w|} \\
& -C \subseteq \mathbf{2}^{*}, \rho(C)=\{\rho(w) \mid w \in C \backslash\{\varepsilon\}\} \subseteq[0,1]_{\mathbb{Q}}
\end{aligned}
$$

Synchronizing morphisms

$$
\begin{gathered}
C=C_{1}^{*} u_{1} \cdots C_{n}^{*} u_{n}, D=D_{1}^{*} v_{1} \cdots D_{m}^{*} v_{m} . C \xrightarrow{s . m .} D \text { is } \\
f:[1, \ldots, n] \rightarrow[1, \ldots, m] \text { s.t. }
\end{gathered}
$$

i) f is monotonic and
ii) $\quad \rho\left(C_{i}^{*}\right) \subseteq \rho\left(D_{f(i)}^{*}\right)$ for all $i=1, \ldots, n$.

Step 2: Characterization for simple languages

Parikh ratio

$$
\begin{aligned}
& -w \in \mathbf{2}^{*} \backslash\{\varepsilon\}, \rho(w)=\frac{|w|_{1}}{|w|} \\
& -C \subseteq \mathbf{2}^{*}, \rho(C)=\{\rho(w) \mid w \in C \backslash\{\varepsilon\}\} \subseteq[0,1]_{\mathbb{Q}}
\end{aligned}
$$

Synchronizing morphisms

$$
C=C_{1}^{*} u_{1} \cdots C_{n}^{*} u_{n}, D=D_{1}^{*} v_{1} \cdots D_{m}^{*} v_{m} . C \xrightarrow{s . m .} D \text { is }
$$

$$
f:[1, \ldots, n] \rightarrow[1, \ldots, m] \text { s.t. }
$$

i) f is monotonic and
ii) $\quad \rho\left(C_{i}^{*}\right) \subseteq \rho\left(D_{f(i)}^{*}\right)$ for all $i=1, \ldots, n$.

Step 2: Characterization for simple languages

Proposition

For all simple languages $C, D \subseteq \mathbf{2}^{*}$,
$\operatorname{ReL}(C) \subseteq \operatorname{REL}(D)$ iff $\pi(C) \subseteq \pi(D)$ and $C \xrightarrow{\text { s.m. }} D$.

Step 2: Characterization for simple languages

Proposition

For all simple languages $C, D \subseteq \mathbf{2}^{*}$,

$$
\operatorname{ReL}(C) \subseteq \operatorname{ReL}(D) \text { iff } \pi(C) \subseteq \pi(D) \text { and } C \xrightarrow{\text { s.m. }} D .
$$

Examples
$-\operatorname{Rec}\left((12)^{*}(112)^{*}\right) \subseteq \operatorname{ReL}\left((12 \cup 11122)^{*}(121)^{*} 1^{*} 2^{*}\right)$,
$-\operatorname{ReL}\left((112)^{*}(12)^{*}\right) \nsubseteq \operatorname{REL}\left((12 \cup 11122)^{*}(121)^{*} 1^{*} 2^{*}\right)$.

Step 3: Dealing with unions

Unions on the left
$\operatorname{REL}\left(C_{1} \cup C_{2}\right) \subseteq \operatorname{ReL}(D)$ iff
$\operatorname{ReL}\left(C_{1}\right) \subseteq \operatorname{ReL}(D)$ and $\operatorname{ReL}\left(C_{2}\right) \subseteq \operatorname{ReL}(D)$.

Step 3: Dealing with unions

Unions on the left

$\operatorname{ReL}\left(C_{1} \cup C_{2}\right) \subseteq \operatorname{ReL}(D)$ iff
$\operatorname{ReL}\left(C_{1}\right) \subseteq \operatorname{ReL}(D)$ and $\operatorname{ReL}\left(C_{2}\right) \subseteq \operatorname{ReL}(D)$.

Unions on the right

For C simple and $D=\bigcup_{j} D_{j}$ a finite union of simple languages, the following are equivalent:
i) $\operatorname{ReL}(C) \subseteq \operatorname{ReL}(D)$,
ii) $\quad \pi(C) \subseteq \pi(D), \exists j$ with $C \xrightarrow{\text { s.m. }} D_{j}$ and in addition, if C is heterogeneous, then $\operatorname{REL}\left(C \backslash\left[D_{j}\right]_{\pi}\right) \subseteq \operatorname{REL}\left(\bigcup_{j^{\prime} \neq j} D_{j^{\prime}}\right)$.

$$
\left[D_{j}\right]_{\pi}=\pi^{-1}\left(\pi\left(D_{j}\right)\right)=\left\{w \mid \pi(w) \in \pi\left(D_{j}\right)\right\}
$$

Future work

- Our proof gives an effective algorithm to resynchronize relations. We would like to determine the exact complexity.

Future work

- Our proof gives an effective algorithm to resynchronize relations. We would like to determine the exact complexity.
- What about k-ary relations? Step 1 relies on geometric arguments that only hold in dimension 2.

Thanks for your attention!

[^0]: ${ }^{1}$ Joint work with D. Figueira and G. Puppis

[^1]: ${ }^{2}$ D. Figueira and L. Libkin. Synchronizing relations on words. ACM Transactions on Computer Systems, 2015.

[^2]: ${ }^{2}$ D. Figueira and L. Libkin. Synchronizing relations on words. ACM Transactions on Computer Systems, 2015.

