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Languages vs. relations

Languages

• Finite monoids
q

• NFA’s
q

• Regular expressions
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• REG(
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Synchronized pairs of words (over a fixed alphabet A)

Synchronizing pairs of words

A synchronization of (w1, w2) is a
word over 2× A so that the
projection on A of positions labeled
i is exactly wi for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b)
synchronize (ab, a).

Every word w ∈ (2× A)∗ is a synchronization of a unique pair
(w1, w2) that we denote JwK.

J(1, a)(1, b)(2, a)K = J(1, a)(2, a)(1, b)K = (ab, a).
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Synchronized relations

Synchronizing relations

We lift this notion to languages L ⊆ (2× A)∗

JLK = {JwK | w ∈ L}

Example

A = {a, b}, L = ((1, a)(2, a) ∪ (1, a)(2, b) ∪ (1, b)(2, a) ∪ (1, b)(2, b))∗,

JLK = {(w1, w2) | |w1| = |w2|}.
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C-controlled relations

Restrictions on the shape of the projection over 2 

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}
Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.
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Class Containment Problem

Class Containment Problem

Input: Two regular languages C,D ⊆ 2∗

Output: Is Rel(C) ⊆ Rel(D) ?

Examples

-If C ⊆ D, then Rel(C) ⊆ Rel(D),
-Rel(1∗2∗) ⊆ Rel((12)∗(1∗ ∪ 2∗)),
-Rel((12)∗(1∗ ∪ 2∗)) 6⊆ Rel(1∗2∗),
-Rel(1∗2∗) = Rel(2∗1∗),
-Rel((12)∗) = Rel((21)∗).
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Previous work2

Decidability and complexity

The problem is decidable for Rel(D) =REC, REG or Length-pres.

Resynchronization

The proof is constructive in terms of the automaton:

Given a C-controlled language L, one can effectively
construct a D-controlled language L′ such that JLK = JL′K.

2D. Figueira and L. Libkin. Synchronizing relations on words. ACM
Transactions on Computer Systems, 2015.
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Our contribution

We prove that the Class Containment Problem is decidable for
arbitrary C and D and, in case of positive answer, we give an effective
method for resynchronizing relations.

Proof idea

Step 1: Rewrite C and D as finite unions of simple languages.

Step 2: Characterization for simple languages.

Step 3: Induction on the amount of disjuncts in the unions.
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Step 1: Decomposition into simple languages

Concat-star languages

C∗1u1 · · ·C∗nun
with C1, . . . , Cn regular languages, u1, . . . , un words.

Simple languages

Concat-star languages of star-height 1 + extra restrictions.

Examples

1∗(12)∗2∗12 3

1∗(12 ∪ 1)∗(112)∗1 3

(1∗2)∗2∗11 7

(12)∗1∗ ∪ (12)∗2∗ 7
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Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of
concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite
union of simple languages.
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Step 2: Characterization for simple languages

Parikh ratio

-w ∈ 2∗ \ {ε}, ρ(w) = |w|1
|w| .

-C ⊆ 2∗, ρ(C) = {ρ(w) | w ∈ C \ {ε}} ⊆ [0, 1]Q.

Synchronizing morphisms

C = C∗1u1 · · ·C∗nun, D = D∗1v1 · · ·D∗mvm. C
s.m.−−−→ D is

f : [1, . . . , n]→ [1, . . . ,m] s.t.

i) f is monotonic and
ii) ρ(C∗i ) ⊆ ρ(D∗f(i)) for all i = 1, . . . , n.
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Step 2: Characterization for simple languages

Parikh ratio

w 2 2⇤ \ {"}, ⇢(w) = |w|1
|w| .

C ✓ 2⇤, ⇢(C) = {⇢(w) | w 2 C \ {"}} ✓ [0, 1]Q.

Synchronizing morphisms

C = C⇤
1u1 · · · C⇤

nun, D = D⇤
1v1 · · · D⇤

mvm. C
s.m.���! D is

f : [1, . . . , n] ! [1, . . . , m] s.t.

i) f is monotonic and
ii) ⇢(C⇤

i ) ✓ ⇢(D⇤
f(i)) for all i = 1, . . . , n.

2⇤ 1⇤ (122 [ 12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [ 112)⇤ (11 [ 111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q�((112)⇤)

Q�((122)⇤)

Q�((122 [ 12)⇤)

Q�((122 [ 112)⇤)

a:
b:
c:
d:
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Step 2: Characterization for simple languages

Proposition

For all simple languages C,D ⊆ 2∗,

Rel(C) ⊆ Rel(D) iff π(C) ⊆ π(D) and C
s.m.−−−→ D.

Examples

-Rel((12)∗(112)∗) ⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗),
-Rel((112)∗(12)∗) 6⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗).
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Step 3: Dealing with unions

Unions on the left

Rel(C1 ∪ C2) ⊆ Rel(D) iff
Rel(C1) ⊆ Rel(D) and Rel(C2) ⊆ Rel(D).

Unions on the right

For C simple and D =
⋃
j Dj a finite union of simple languages, the

following are equivalent:
i) Rel(C) ⊆ Rel(D),

ii) π(C) ⊆ π(D), ∃j with C
s.m.−−−→ Dj and in addition, if C is

heterogeneous, then Rel(C \ [Dj ]π) ⊆ Rel(
⋃
j′ 6=j Dj′).

[Dj ]π = π−1(π(Dj)) = {w | π(w) ∈ π(Dj)}.
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Future work

Our proof gives an effective algorithm to resynchronize
relations. We would like to determine the exact
complexity.

What about k-ary relations? Step 1 relies on geometric
arguments that only hold in dimension 2.
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Thanks for your attention!
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