
Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Resynchronizing Classes of Word Relations

Maŕıa Emilia Descotte 1

LaBRI

17e Journées Montoises d’informatique théorique
September 12th 2018

1Joint work with D. Figueira and G. Puppis

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Languages vs. relations

Languages

• Finite monoids
q

• NFA’s
q

• Regular expressions

Relations

• REC(

• REG(

• RAT

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Languages vs. relations

Languages

• Finite monoids

q
• NFA’s

q
• Regular expressions

Relations

• REC

(

• REG(

• RAT

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Languages vs. relations

Languages

• Finite monoids

q

• NFA’s

q
• Regular expressions

Relations

• REC

(

• REG

(

• RAT

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Languages vs. relations

Languages

• Finite monoids

q

• NFA’s

q

• Regular expressions

Relations

• REC

(

• REG

(

• RAT

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Languages vs. relations

Languages

• Finite monoids
q

• NFA’s
q

• Regular expressions

Relations

• REC(

• REG(

• RAT

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Synchronized pairs of words (over a fixed alphabet A)

Synchronizing pairs of words

A synchronization of (w1, w2) is a
word over 2× A so that the
projection on A of positions labeled
i is exactly wi for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b)
synchronize (ab, a).

Every word w ∈ (2× A)∗ is a synchronization of a unique pair
(w1, w2) that we denote JwK.

J(1, a)(1, b)(2, a)K = J(1, a)(2, a)(1, b)K = (ab, a).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Synchronized pairs of words (over a fixed alphabet A)

Synchronizing pairs of words

A synchronization of (w1, w2) is a
word over 2× A so that the
projection on A of positions labeled
i is exactly wi for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b)
synchronize (ab, a).

Every word w ∈ (2× A)∗ is a synchronization of a unique pair
(w1, w2) that we denote JwK.

J(1, a)(1, b)(2, a)K = J(1, a)(2, a)(1, b)K = (ab, a).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Synchronized pairs of words (over a fixed alphabet A)

Synchronizing pairs of words

A synchronization of (w1, w2) is a
word over 2× A so that the
projection on A of positions labeled
i is exactly wi for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b)
synchronize (ab, a).

Every word w ∈ (2× A)∗ is a synchronization of a unique pair
(w1, w2) that we denote JwK.

J(1, a)(1, b)(2, a)K = J(1, a)(2, a)(1, b)K = (ab, a).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Synchronized relations

Synchronizing relations

We lift this notion to languages L ⊆ (2× A)∗

JLK = {JwK | w ∈ L}

Example

A = {a, b}, L = ((1, a)(2, a) ∪ (1, a)(2, b) ∪ (1, b)(2, a) ∪ (1, b)(2, b))∗,

JLK = {(w1, w2) | |w1| = |w2|}.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Synchronized relations

Synchronizing relations

We lift this notion to languages L ⊆ (2× A)∗

JLK = {JwK | w ∈ L}

Example

A = {a, b}, L = ((1, a)(2, a) ∪ (1, a)(2, b) ∪ (1, b)(2, a) ∪ (1, b)(2, b))∗,

JLK = {(w1, w2) | |w1| = |w2|}.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}
Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}
Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}
Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}

Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

C ⊆ 2∗ regular
-w ∈ (2× A)∗ is C-controlled if its
projection over 2 belongs to C.
-L ⊆ (2× A)∗ is C-controlled if all
its words are.

Examples

-Every w ∈ (2× A)∗ is 2∗-controlled,
-(1, a)(1, b)(2, a) is 1∗2∗-controlled,
-(1, a)(2, a)(1, b) isn’t 1∗2∗-controlled,
-L (previous slide) is (12)∗-controlled.

C-controlled relations

Given a regular language C ⊆ 2∗

Rel(C) =
{
JLK | L is reg. and C-controlled

}
Examples

-Rel(1∗2∗) =REC,
-Rel((12)∗(1∗ ∪ 2∗)) =REG,
-Rel(2∗) =RAT.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Class Containment Problem

Class Containment Problem

Input: Two regular languages C,D ⊆ 2∗

Output: Is Rel(C) ⊆ Rel(D) ?

Examples

-If C ⊆ D, then Rel(C) ⊆ Rel(D),
-Rel(1∗2∗) ⊆ Rel((12)∗(1∗ ∪ 2∗)),
-Rel((12)∗(1∗ ∪ 2∗)) 6⊆ Rel(1∗2∗),
-Rel(1∗2∗) = Rel(2∗1∗),
-Rel((12)∗) = Rel((21)∗).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Class Containment Problem

Class Containment Problem

Input: Two regular languages C,D ⊆ 2∗

Output: Is Rel(C) ⊆ Rel(D) ?

Examples

-If C ⊆ D, then Rel(C) ⊆ Rel(D),
-Rel(1∗2∗) ⊆ Rel((12)∗(1∗ ∪ 2∗)),
-Rel((12)∗(1∗ ∪ 2∗)) 6⊆ Rel(1∗2∗),
-Rel(1∗2∗) = Rel(2∗1∗),
-Rel((12)∗) = Rel((21)∗).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Previous work2

Decidability and complexity

The problem is decidable for Rel(D) =REC, REG or Length-pres.

Resynchronization

The proof is constructive in terms of the automaton:

Given a C-controlled language L, one can effectively
construct a D-controlled language L′ such that JLK = JL′K.

2D. Figueira and L. Libkin. Synchronizing relations on words. ACM
Transactions on Computer Systems, 2015.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Previous work2

Decidability and complexity

The problem is decidable for Rel(D) =REC, REG or Length-pres.

Resynchronization

The proof is constructive in terms of the automaton:

Given a C-controlled language L, one can effectively
construct a D-controlled language L′ such that JLK = JL′K.

2D. Figueira and L. Libkin. Synchronizing relations on words. ACM
Transactions on Computer Systems, 2015.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Our contribution

We prove that the Class Containment Problem is decidable for
arbitrary C and D and, in case of positive answer, we give an effective
method for resynchronizing relations.

Proof idea

Step 1: Rewrite C and D as finite unions of simple languages.

Step 2: Characterization for simple languages.

Step 3: Induction on the amount of disjuncts in the unions.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Our contribution

We prove that the Class Containment Problem is decidable for
arbitrary C and D and, in case of positive answer, we give an effective
method for resynchronizing relations.

Proof idea

Step 1: Rewrite C and D as finite unions of simple languages.

Step 2: Characterization for simple languages.

Step 3: Induction on the amount of disjuncts in the unions.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Concat-star languages

C∗1u1 · · ·C∗nun
with C1, . . . , Cn regular languages, u1, . . . , un words.

Simple languages

Concat-star languages of star-height 1 + extra restrictions.

Examples

1∗(12)∗2∗12 3

1∗(12 ∪ 1)∗(112)∗1 3

(1∗2)∗2∗11 7

(12)∗1∗ ∪ (12)∗2∗ 7

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Concat-star languages

C∗1u1 · · ·C∗nun
with C1, . . . , Cn regular languages, u1, . . . , un words.

Simple languages

Concat-star languages of star-height 1 + extra restrictions.

Examples

1∗(12)∗2∗12 3

1∗(12 ∪ 1)∗(112)∗1 3

(1∗2)∗2∗11 7

(12)∗1∗ ∪ (12)∗2∗ 7

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Concat-star languages

C∗1u1 · · ·C∗nun
with C1, . . . , Cn regular languages, u1, . . . , un words.

Simple languages

Concat-star languages of star-height 1 + extra restrictions.

Examples

1∗(12)∗2∗12 3

1∗(12 ∪ 1)∗(112)∗1 3

(1∗2)∗2∗11 7

(12)∗1∗ ∪ (12)∗2∗ 7

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of
concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite
union of simple languages.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of
concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite
union of simple languages.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.

Every concat-star language is Rel-equivalent to a finite union of
concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite
union of simple languages.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

-w ∈ 2∗ \ {ε}, ρ(w) = |w|1
|w| .

-C ⊆ 2∗, ρ(C) = {ρ(w) | w ∈ C \ {ε}} ⊆ [0, 1]Q.

Synchronizing morphisms

C = C∗1u1 · · ·C∗nun, D = D∗1v1 · · ·D∗mvm. C
s.m.−−−→ D is

f : [1, . . . , n]→ [1, . . . ,m] s.t.

i) f is monotonic and
ii) ρ(C∗i) ⊆ ρ(D∗f(i)) for all i = 1, . . . , n.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

w 2 2⇤ \ {"}, ⇢(w) = |w|1
|w| .

C ✓ 2⇤, ⇢(C) = {⇢(w) | w 2 C \ {"}} ✓ [0, 1]Q.

Synchronizing morphisms

C = C⇤
1u1 · · · C⇤

nun, D = D⇤
1v1 · · · D⇤

mvm. C
s.m.���! D is

f : [1, . . . , n] ! [1, . . . , m] s.t.

i) f is monotonic and
ii) ⇢(C⇤

i) ✓ ⇢(D⇤
f(i)) for all i = 1, . . . , n.

2⇤ 1⇤ (122 [12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [112)⇤ (11 [111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q�((112)⇤)

Q�((122)⇤)

Q�((122 [12)⇤)

Q�((122 [112)⇤)

a:
b:
c:
d:

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

-w ∈ 2∗ \ {ε}, ρ(w) = |w|1
|w| .

-C ⊆ 2∗, ρ(C) = {ρ(w) | w ∈ C \ {ε}} ⊆ [0, 1]Q.

Synchronizing morphisms

C = C∗1u1 · · ·C∗nun, D = D∗1v1 · · ·D∗mvm. C
s.m.−−−→ D is

f : [1, . . . , n]→ [1, . . . ,m] s.t.

i) f is monotonic and
ii) ρ(C∗i) ⊆ ρ(D∗f(i)) for all i = 1, . . . , n.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

w 2 2⇤ \ {"}, ⇢(w) = |w|1
|w| .

C ✓ 2⇤, ⇢(C) = {⇢(w) | w 2 C \ {"}} ✓ [0, 1]Q.

Synchronizing morphisms

C = C⇤
1u1 · · · C⇤

nun, D = D⇤
1v1 · · · D⇤

mvm. C
s.m.���! D is

f : [1, . . . , n] ! [1, . . . , m] s.t.

i) f is monotonic and
ii) ⇢(C⇤

i) ✓ ⇢(D⇤
f(i)) for all i = 1, . . . , n.

2⇤ 1⇤ (122 [12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [112)⇤ (11 [111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q�((112)⇤)

Q�((122)⇤)

Q�((122 [12)⇤)

Q�((122 [112)⇤)

a:
b:
c:
d:

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

-w ∈ 2∗ \ {ε}, ρ(w) = |w|1
|w| .

-C ⊆ 2∗, ρ(C) = {ρ(w) | w ∈ C \ {ε}} ⊆ [0, 1]Q.

Synchronizing morphisms

C = C∗1u1 · · ·C∗nun, D = D∗1v1 · · ·D∗mvm. C
s.m.−−−→ D is

f : [1, . . . , n]→ [1, . . . ,m] s.t.

i) f is monotonic and
ii) ρ(C∗i) ⊆ ρ(D∗f(i)) for all i = 1, . . . , n.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Parikh ratio

w 2 2⇤ \ {"}, ⇢(w) = |w|1
|w| .

C ✓ 2⇤, ⇢(C) = {⇢(w) | w 2 C \ {"}} ✓ [0, 1]Q.

Synchronizing morphisms

C = C⇤
1u1 · · · C⇤

nun, D = D⇤
1v1 · · · D⇤

mvm. C
s.m.���! D is

f : [1, . . . , n] ! [1, . . . , m] s.t.

i) f is monotonic and
ii) ⇢(C⇤

i) ✓ ⇢(D⇤
f(i)) for all i = 1, . . . , n.

2⇤ 1⇤ (122 [12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [112)⇤ (11 [111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q�((112)⇤)

Q�((122)⇤)

Q�((122 [12)⇤)

Q�((122 [112)⇤)

a:
b:
c:
d:

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Proposition

For all simple languages C,D ⊆ 2∗,

Rel(C) ⊆ Rel(D) iff π(C) ⊆ π(D) and C
s.m.−−−→ D.

Examples

-Rel((12)∗(112)∗) ⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗),
-Rel((112)∗(12)∗) 6⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 2: Characterization for simple languages

Proposition

For all simple languages C,D ⊆ 2∗,

Rel(C) ⊆ Rel(D) iff π(C) ⊆ π(D) and C
s.m.−−−→ D.

Examples

-Rel((12)∗(112)∗) ⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗),
-Rel((112)∗(12)∗) 6⊆ Rel((12 ∪ 11122)∗(121)∗1∗2∗).

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 3: Dealing with unions

Unions on the left

Rel(C1 ∪ C2) ⊆ Rel(D) iff
Rel(C1) ⊆ Rel(D) and Rel(C2) ⊆ Rel(D).

Unions on the right

For C simple and D =
⋃
j Dj a finite union of simple languages, the

following are equivalent:
i) Rel(C) ⊆ Rel(D),

ii) π(C) ⊆ π(D), ∃j with C
s.m.−−−→ Dj and in addition, if C is

heterogeneous, then Rel(C \ [Dj]π) ⊆ Rel(
⋃
j′ 6=j Dj′).

[Dj]π = π−1(π(Dj)) = {w | π(w) ∈ π(Dj)}.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Step 3: Dealing with unions

Unions on the left

Rel(C1 ∪ C2) ⊆ Rel(D) iff
Rel(C1) ⊆ Rel(D) and Rel(C2) ⊆ Rel(D).

Unions on the right

For C simple and D =
⋃
j Dj a finite union of simple languages, the

following are equivalent:
i) Rel(C) ⊆ Rel(D),

ii) π(C) ⊆ π(D), ∃j with C
s.m.−−−→ Dj and in addition, if C is

heterogeneous, then Rel(C \ [Dj]π) ⊆ Rel(
⋃
j′ 6=j Dj′).

[Dj]π = π−1(π(Dj)) = {w | π(w) ∈ π(Dj)}.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Future work

Our proof gives an effective algorithm to resynchronize
relations. We would like to determine the exact
complexity.

What about k-ary relations? Step 1 relies on geometric
arguments that only hold in dimension 2.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Future work

Our proof gives an effective algorithm to resynchronize
relations. We would like to determine the exact
complexity.

What about k-ary relations? Step 1 relies on geometric
arguments that only hold in dimension 2.

Relations on words Synchronized relations Class Containment Problem The proof Conclusions

Thanks for your attention!

	Relations on words
	Synchronized relations
	Class Containment Problem
	Class Containment Problem

	The proof
	Conclusions

