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Beatty sequences

Beatty sequence: A(n) = bnαc for n ≥ 1, where α is a positive real
number.

Beatty observed: if B(n) := bnβc, with

1

α
+

1

β
= 1, (1)

then (A(n)) and (B(n)) are complementary sequences.

The sets {A(n) : n ≥ 1} and {B(n) : n ≥ 1} are disjoint and their
union is the set of positive integers.

Example α = ϕ = 1+
√
5

2 the golden ratio.

(bnϕc)n≥1 and (bnϕ2c)n≥1 are complementary.

A = (1, 3, 4, 6, 8, . . . , ), B = (2, 5, 7, 10, 13, . . . ).
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Carlitz-Scoville-Hoggatt

Consider the monoid generated by (A(n))n≥1 and (B(n))n≥1 for
the composition of sequences.

Choose α = ϕ = 1+
√
5

2 .

Theorem (Carlitz-Scoville-Hoggatt)

Let U = (U(n))n≥1 be a composition of the sequences
A = (bnϕc)n≥1 and B = (bnϕ2c)n≥1, containing i occurrences of
A and j occurrences of B, then for all n ≥ 1

U(n) = Fi+2jA(n) + Fi+2j−1n − λU ,

where Fk are the Fibonacci numbers (F0 = 0, F1 = 1,
Fn+2 = Fn+1 + Fn) and λU a constant.

Example B(B(A(n))) = 5A(n) + 3n − 3 for all n ≥ 1.
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Generalized Beatty sequences

(U(n)) = (Fi+2jA(n) + Fi+2j−1n − λU) is an example of a GBS.

Definition of generalized Beatty sequence V :

V (n) = pbnαc+ qn + r , n = 1, 2, . . . where p, q, r are integers.

We also admit:

V (n) = pbnαc+ qn + r , n = 0, 1, . . . where p, q, r are integers.
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Questions

Question 1 Let α be an irrational number, and let A defined by
A(n) = bnαc for n ≥ 1 be the Beatty sequence of α.

Let Id defined by Id(n) = n.

For which sixtuples of integers p, q, r , s, t, u are the two sequences

V = pA + q Id + r and W = sA + t Id + u

complementary sequences?

Question 2 For which 9-tuples of integers
(p1, q1, r1, p2, q2, r2, p3, q3, r3) the three sequences

Vi = piA + qi Id + ri , i = 1, 2, 3

are a complementary triple?

Complementary triple: three sequences so that the sets they
determine are disjoint with union the positive integers.
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Intermezzo: Sturmian words

A Sturmian word w is an infinite word w = w0w1w2 . . . , in which
occur only n + 1 subwords of length n for n = 1, 2 . . . .

Rotations on the circle:

wn = sα,ρ(n) = [(n + 1)α + ρ]− [nα + ρ], n = 0, 1, 2, . . . .

or as

wn = s ′α,ρ(n) = d(n + 1)α + ρe − dnα + ρe, n = 0, 1, 2, . . . .

Homogeneous Sturmian word: ρ = 0.

Example α = 1+
√
5

2 , ρ = 0. Here w = 2122121221221212 . . . ,
obtained by replacing 0 by 2 in the unique fixed point xF of the
Fibonacci morphism 0→ 01, 1→ 0.
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How to recognize a golden mean GBS

α = ϕ = 1+
√
5

2 , the golden ratio.

Lemma

Let V = (V (n))n≥1 be the generalized Beatty sequence defined by
V (n) = p(bnϕc) + qn + r , and let ∆V be the sequence of its first
differences. Then ∆V is the Fibonacci sequence on the alphabet
{2p + q, p + q}.

Proof:
V (n+1)−V (n) = p

[
A(n+1)−A(n)

]
+q = p

[
b(n+1)ϕc−bnϕc

]
+q.
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Partial answer to Question 1, part I

Theorem

Let α = ϕ. Then there are no more than two increasing solutions
with V (1) = 1 to the complementary pair problem:
(p, q, r , s, t, u) = (1, 0, 0, 1, 1, 0) and
(p, q, r , s, t, u) = (−1, 3,−1, 1, 2, 0).

The solutions are the two Beatty pairs

([nϕ]), ([nϕ2]) and

([n(3− ϕ)]), ([n(ϕ+ 2)]).
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Partial answer to Question 1, part II

Theorem

[Odd Fibonacci] Let α = ϕ. Any solution (p, q, r , s, t, u) to the
complementary pair problem with p > 0 has to satisfy: p divides
some Fibonacci number of odd index, i.e., p divides some number
in the set {1, 2, 5, 13, 34, . . .}.

Corollary

There are no solutions to the golden mean complementary pair
problem if −1 is not a square modulo p, i.e., if p does not belong
to the sequence 1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, . . .
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Proof sketch of the “odd Fibonacci” Theorem

Consider the densities of V and W in N ⇒ necessary condition for
(pA + q Id + r , sA + t Id + u) to be a complementary pair is that

1

pα + q
+

1

sα + t
= 1

Lemma

Let α = ϕ. A necessary condition for the pair
V = pA + q Id+ r and W = sA + t Id+ u to be a complementary
pair is that p 6= 0 is a solution to the generalized Pell equation

5p2x2 − 4x = y2, x , y ∈ Z

.
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Another example of GBS’s

Let L be a language, i.e., a sub-semigroup of the free semigroup
generated by a finite alphabet under the concatenation operation.

A homomorphism of L into the natural numbers is a map
S : L → N satisfying S(vw) = S(v) + S(w), for all v ,w ∈ L.

Let LF be the Fibonacci language, i.e., the set of all words
occurring in xF = 010010100100 . . . .

Theorem

[D.,TCS,2018]

Let S : LF → N be a homomorphism. Define a = S(0), b = S(1).
Then S(LF) is the union of the two generalized Beatty sequences(
(a− b)bnϕc+ (2b− a)n

)
and

(
(a− b)bnϕc+ (2b− a)n + a− b

)
.
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Homomorphisms and complementary triples

When is N \ S(LF) also a GBS?

Actually this happens for only a few homomorphisms S!

Main example Let S be given by S(0) = 3 and S(1) = 1.
Then S(LF) is (2bnϕc − n)n≥1 = 1, 4, 5, 8, 11, 12, 15, 16, ....
together with (2bnϕc − n + 2)n≥1 = 3, 6, 7, 10, 13, 14, 17, 18, ...,
and N \ S(LF) = 2, 9, 20, 27, 38, 49, ....

S(11) = 2, but 11 ⊀ LF.

S(10101) = 9, but 10101 ⊀ LF.

Theorem

N \ S(LF) = (4bnϕc+ 3n + 2)n≥0.
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Final example of GBS’s

Theorem

Let xF be the Fibonacci word, and let w be any word in the
Fibonacci language LF. Let Y be the sequence of positions of the
occurrences of w in xF. Then Y is a generalized Beatty sequence,
i.e., for all n ≥ 0 Y (n + 1) = pbnϕc+ qn + r with parameters
p, q, r , which can be explicitly computed.

Proof idea: Let xF = r0(w)r1(w)r2(w)r3(w) . . . , written as a
concatenation of return words of the word w .

Main theorem in [Huang & Wen, TCS, 2015]:

if we skip r0(w), then the return words occur as the Fibonacci
word on the alphabet {r1(w), r2(w)}.
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THE END



Final treat: Creating triples from pairs

Theorem

Let (V ,W ) be a complementary pair V = pA + q Id + r and
W = sA + t Id + u. Then (V1,V2,V3) is a complementary triple,
where the three parameters of V1 are (p + q, p, r − p), those of V2

are (2p + q, p + q, r), and V3 = W .

Proof idea:

A(N) ∪ B(N) = N, V (N) ∪W (N) = N.

Put one into the other ⇒ you obtain the disjoint union

V (A(N)) ∪ V (B(N)) ∪ W (N) = N.

Carlitz-Scoville-Hoggatt Theorem ⇒

AA(n) = A(n) + n − 1, AB(n) = 2A(n) + n.
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