Generalized Beatty sequences

and complementary triples

Michel Dekking
Joint work with Jean-Paul Allouche

$17^{\text {e }}$ Journeés Montoises 25 minutes lecture

September 11, 2018-just before the wine tasting

Beatty sequences

Beatty sequence: $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$, where α is a positive real number.
Beatty observed: if $B(n):=\lfloor n \beta\rfloor$, with

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=1 \tag{1}
\end{equation*}
$$

then $(A(n))$ and $(B(n))$ are complementary sequences.
The sets $\{A(n): n \geq 1\}$ and $\{B(n): n \geq 1\}$ are disjoint and their union is the set of positive integers.

Beatty sequences

Beatty sequence: $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$, where α is a positive real number.
Beatty observed: if $B(n):=\lfloor n \beta\rfloor$, with

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=1 \tag{1}
\end{equation*}
$$

then $(A(n))$ and $(B(n))$ are complementary sequences.
The sets $\{A(n): n \geq 1\}$ and $\{B(n): n \geq 1\}$ are disjoint and their union is the set of positive integers.

Example $\alpha=\varphi=\frac{1+\sqrt{5}}{2}$ the golden ratio.
$(\lfloor n \varphi\rfloor)_{n \geq 1}$ and $\left(\left\lfloor n \varphi^{2}\right\rfloor\right)_{n \geq 1}$ are complementary.
$A=(1,3,4,6,8, \ldots),, \quad B=(2,5,7,10,13, \ldots)$.

Carlitz-Scoville-Hoggatt

Consider the monoid generated by $(A(n))_{n \geq 1}$ and $(B(n))_{n \geq 1}$ for the composition of sequences.
Choose $\alpha=\varphi=\frac{1+\sqrt{5}}{2}$.
Theorem (Carlitz-Scoville-Hoggatt)
Let $U=(U(n))_{n \geq 1}$ be a composition of the sequences
$A=(\lfloor n \varphi\rfloor)_{n \geq 1}$ and $B=\left(\left\lfloor n \varphi^{2}\right\rfloor\right)_{n \geq 1}$, containing i occurrences of A and j occurrences of B, then for all $n \geq 1$

$$
U(n)=F_{i+2 j} A(n)+F_{i+2 j-1} n-\lambda_{U},
$$

where F_{k} are the Fibonacci numbers ($F_{0}=0, F_{1}=1$, $\left.F_{n+2}=F_{n+1}+F_{n}\right)$ and λ_{U} a constant.

Carlitz-Scoville-Hoggatt

Consider the monoid generated by $(A(n))_{n \geq 1}$ and $(B(n))_{n \geq 1}$ for the composition of sequences.
Choose $\alpha=\varphi=\frac{1+\sqrt{5}}{2}$.
Theorem (Carlitz-Scoville-Hoggatt)
Let $U=(U(n))_{n \geq 1}$ be a composition of the sequences
$A=(\lfloor n \varphi\rfloor)_{n \geq 1}$ and $B=\left(\left\lfloor n \varphi^{2}\right\rfloor\right)_{n \geq 1}$, containing i occurrences of A and j occurrences of B, then for all $n \geq 1$

$$
U(n)=F_{i+2 j} A(n)+F_{i+2 j-1} n-\lambda_{U},
$$

where F_{k} are the Fibonacci numbers ($F_{0}=0, F_{1}=1$, $\left.F_{n+2}=F_{n+1}+F_{n}\right)$ and λ_{U} a constant.

Example $B(B(A(n)))=5 A(n)+3 n-3$ for all $n \geq 1$.

Generalized Beatty sequences

$(U(n))=\left(F_{i+2 j} A(n)+F_{i+2 j-1} n-\lambda_{U}\right)$ is an example of a GBS.
Definition of generalized Beatty sequence V :
$V(n)=p\lfloor n \alpha\rfloor+q n+r, n=1,2, \ldots \quad$ where p, q, r are integers.

Generalized Beatty sequences

$(U(n))=\left(F_{i+2 j} A(n)+F_{i+2 j-1} n-\lambda_{U}\right)$ is an example of a GBS.
Definition of generalized Beatty sequence V :
$V(n)=p\lfloor n \alpha\rfloor+q n+r, n=1,2, \ldots \quad$ where p, q, r are integers.
We also admit:
$V(n)=p\lfloor n \alpha\rfloor+q n+r, n=0,1, \ldots \quad$ where p, q, r are integers.

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α.
Let Id defined by $\operatorname{Id}(n)=n$.
For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$
V=p A+q \operatorname{Id}+r \text { and } W=s A+t \operatorname{Id}+u
$$

complementary sequences?

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α.
Let Id defined by $\operatorname{Id}(n)=n$.
For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$
V=p A+q \operatorname{Id}+r \text { and } W=s A+t \operatorname{Id}+u
$$

complementary sequences?
Question 2 For which 9-tuples of integers
($p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2}, p_{3}, q_{3}, r_{3}$) the three sequences

$$
V_{i}=p_{i} A+q_{i} \operatorname{Id}+r_{i}, i=1,2,3
$$

are a complementary triple?

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α.
Let Id defined by $\operatorname{Id}(n)=n$.
For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$
V=p A+q \operatorname{Id}+r \text { and } W=s A+t \operatorname{Id}+u
$$

complementary sequences?
Question 2 For which 9-tuples of integers
($p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2}, p_{3}, q_{3}, r_{3}$) the three sequences

$$
V_{i}=p_{i} A+q_{i} \operatorname{Id}+r_{i}, i=1,2,3
$$

are a complementary triple?
Complementary triple: three sequences so that the sets they determine are disjoint with union the positive integers.

Intermezzo: Sturmian words

A Sturmian word w is an infinite word $w=w_{0} w_{1} w_{2} \ldots$, in which occur only $n+1$ subwords of length n for $n=1,2 \ldots$.

Intermezzo: Sturmian words

A Sturmian word w is an infinite word $w=w_{0} w_{1} w_{2} \ldots$, in which occur only $n+1$ subwords of length n for $n=1,2 \ldots$.

Rotations on the circle:

$$
w_{n}=s_{\alpha, \rho}(n)=[(n+1) \alpha+\rho]-[n \alpha+\rho], \quad n=0,1,2, \ldots
$$

or as

$$
w_{n}=s_{\alpha, \rho}^{\prime}(n)=\lceil(n+1) \alpha+\rho\rceil-\lceil n \alpha+\rho\rceil, \quad n=0,1,2, \ldots
$$

Intermezzo: Sturmian words

A Sturmian word w is an infinite word $w=w_{0} w_{1} w_{2} \ldots$, in which occur only $n+1$ subwords of length n for $n=1,2 \ldots$.

Rotations on the circle:

$$
w_{n}=s_{\alpha, \rho}(n)=[(n+1) \alpha+\rho]-[n \alpha+\rho], \quad n=0,1,2, \ldots
$$

or as

$$
w_{n}=s_{\alpha, \rho}^{\prime}(n)=\lceil(n+1) \alpha+\rho\rceil-\lceil n \alpha+\rho\rceil, \quad n=0,1,2, \ldots
$$

Homogeneous Sturmian word: $\rho=0$.

Intermezzo: Sturmian words

A Sturmian word w is an infinite word $w=w_{0} w_{1} w_{2} \ldots$, in which occur only $n+1$ subwords of length n for $n=1,2 \ldots$.

Rotations on the circle:

$$
w_{n}=s_{\alpha, \rho}(n)=[(n+1) \alpha+\rho]-[n \alpha+\rho], \quad n=0,1,2, \ldots
$$

or as

$$
w_{n}=s_{\alpha, \rho}^{\prime}(n)=\lceil(n+1) \alpha+\rho\rceil-\lceil n \alpha+\rho\rceil, \quad n=0,1,2, \ldots
$$

Homogeneous Sturmian word: $\rho=0$.
Example $\alpha=\frac{1+\sqrt{5}}{2}, \rho=0$. Here $w=2122121221221212 \ldots$, obtained by replacing 0 by 2 in the unique fixed point x_{F} of the Fibonacci morphism $0 \rightarrow 01,1 \rightarrow 0$.

How to recognize a golden mean GBS

$\alpha=\varphi=\frac{1+\sqrt{5}}{2}$, the golden ratio.

Lemma

Let $V=(V(n))_{n \geq 1}$ be the generalized Beatty sequence defined by $V(n)=p(\lfloor n \varphi\rfloor)+q n+r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci sequence on the alphabet $\{2 p+q, p+q\}$.

How to recognize a golden mean GBS

$\alpha=\varphi=\frac{1+\sqrt{5}}{2}$, the golden ratio.

Lemma

Let $V=(V(n))_{n \geq 1}$ be the generalized Beatty sequence defined by $V(n)=p(\lfloor n \varphi\rfloor)+q n+r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci sequence on the alphabet $\{2 p+q, p+q\}$.

Proof:
$V(n+1)-V(n)=p[A(n+1)-A(n)]+q=p[\lfloor(n+1) \varphi\rfloor-\lfloor n \varphi\rfloor]+q$.

Partial answer to Question 1, part I

Theorem

Let $\alpha=\varphi$. Then there are no more than two increasing solutions with $V(1)=1$ to the complementary pair problem:
$(p, q, r, s, t, u)=(1,0,0,1,1,0)$ and
$(p, q, r, s, t, u)=(-1,3,-1,1,2,0)$.

Partial answer to Question 1, part I

Theorem

Let $\alpha=\varphi$. Then there are no more than two increasing solutions with $V(1)=1$ to the complementary pair problem:
$(p, q, r, s, t, u)=(1,0,0,1,1,0)$ and
$(p, q, r, s, t, u)=(-1,3,-1,1,2,0)$.

The solutions are the two Beatty pairs
([ne]), ([n $\left.\left.\varphi^{2}\right]\right)$ and
$([n(3-\varphi)]),([n(\varphi+2)])$.

Partial answer to Question 1, part II

Theorem
[Odd Fibonacci] Let $\alpha=\varphi$. Any solution (p, q, r, s, t, u) to the complementary pair problem with $p>0$ has to satisfy: p divides some Fibonacci number of odd index, i.e., p divides some number in the set $\{1,2,5,13,34, \ldots\}$.

Partial answer to Question 1, part II

Theorem

[Odd Fibonacci] Let $\alpha=\varphi$. Any solution (p, q, r, s, t, u) to the complementary pair problem with $p>0$ has to satisfy: p divides some Fibonacci number of odd index, i.e., p divides some number in the set $\{1,2,5,13,34, \ldots\}$.

Corollary

There are no solutions to the golden mean complementary pair problem if -1 is not a square modulo p, i.e., if p does not belong to the sequence $1,2,5,10,13,17,25,26,29,34,37,41, \ldots$

Proof sketch of the "odd Fibonacci" Theorem

Consider the densities of V and W in $\mathbb{N} \Rightarrow$ necessary condition for $(p A+q \operatorname{Id}+r, s A+t \operatorname{Id}+u)$ to be a complementary pair is that

$$
\frac{1}{p \alpha+q}+\frac{1}{s \alpha+t}=1
$$

Proof sketch of the "odd Fibonacci" Theorem

Consider the densities of V and W in $\mathbb{N} \Rightarrow$ necessary condition for $(p A+q \operatorname{Id}+r, s A+t \operatorname{Id}+u)$ to be a complementary pair is that

$$
\frac{1}{p \alpha+q}+\frac{1}{s \alpha+t}=1
$$

Lemma

Let $\alpha=\varphi$. A necessary condition for the pair
$V=p A+q \mathrm{Id}+r$ and $W=s A+t \mathrm{Id}+u$ to be a complementary pair is that $p \neq 0$ is a solution to the generalized Pell equation

$$
5 p^{2} x^{2}-4 x=y^{2}, \quad x, y \in \mathbb{Z}
$$

Another example of GBS's

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

Another example of GBS's

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

A homomorphism of \mathcal{L} into the natural numbers is a map $\mathrm{S}: \mathcal{L} \rightarrow \mathbb{N}$ satisfying $\mathrm{S}(v w)=\mathrm{S}(v)+\mathrm{S}(w)$, for all $v, w \in \mathcal{L}$.

Another example of GBS's

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

A homomorphism of \mathcal{L} into the natural numbers is a map $\mathrm{S}: \mathcal{L} \rightarrow \mathbb{N}$ satisfying $\mathrm{S}(v w)=\mathrm{S}(v)+\mathrm{S}(w)$, for all $v, w \in \mathcal{L}$.

Let \mathcal{L}_{F} be the Fibonacci language, i.e., the set of all words occurring in $x_{\mathrm{F}}=010010100100 \ldots$.

Theorem

[D.,TCS,2018]

Let $S: \mathcal{L}_{\mathrm{F}} \rightarrow \mathbb{N}$ be a homomorphism. Define $a=\mathrm{S}(0), b=\mathrm{S}(1)$.
Then $\mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)$ is the union of the two generalized Beatty sequences
$((a-b)\lfloor n \varphi\rfloor+(2 b-a) n)$ and $((a-b)\lfloor n \varphi\rfloor+(2 b-a) n+a-b)$.

Homomorphisms and complementary triples

When is $\mathbb{N} \backslash S\left(\mathcal{L}_{\mathrm{F}}\right)$ also a GBS?
Actually this happens for only a few homomorphisms S!
Main example Let S be given by $S(0)=3$ and $S(1)=1$. Then $S\left(\mathcal{L}_{\mathrm{F}}\right)$ is $(2\lfloor n \varphi\rfloor-n)_{n \geq 1}=1,4,5,8,11,12,15,16, \ldots$. together with $(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}=3,6,7,10,13,14,17,18, \ldots$, and $\mathbb{N} \backslash \mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)=2,9,20,27,38,49, \ldots$.

Homomorphisms and complementary triples

When is $\mathbb{N} \backslash S\left(\mathcal{L}_{\mathrm{F}}\right)$ also a GBS?
Actually this happens for only a few homomorphisms S!
Main example Let S be given by $S(0)=3$ and $S(1)=1$.
Then $S\left(\mathcal{L}_{\mathrm{F}}\right)$ is $(2\lfloor n \varphi\rfloor-n)_{n \geq 1}=1,4,5,8,11,12,15,16, \ldots$. together with $(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}=3,6,7,10,13,14,17,18, \ldots$, and $\mathbb{N} \backslash \mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)=2,9,20,27,38,49, \ldots$.
$\mathrm{S}(11)=2$, but $11 \nprec \mathcal{L}_{\mathrm{F}}$.
$S(10101)=9$, but $10101 \nprec \mathcal{L}_{\mathrm{F}}$.

Homomorphisms and complementary triples

When is $\mathbb{N} \backslash S\left(\mathcal{L}_{\mathrm{F}}\right)$ also a GBS?
Actually this happens for only a few homomorphisms S!
Main example Let S be given by $S(0)=3$ and $S(1)=1$.
Then $S\left(\mathcal{L}_{\mathrm{F}}\right)$ is $(2\lfloor n \varphi\rfloor-n)_{n \geq 1}=1,4,5,8,11,12,15,16, \ldots$. together with $(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}=3,6,7,10,13,14,17,18, \ldots$, and $\mathbb{N} \backslash \mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)=2,9,20,27,38,49, \ldots$.
$\mathrm{S}(11)=2$, but $11 \nprec \mathcal{L}_{\mathrm{F}}$.
$S(10101)=9$, but $10101 \nprec \mathcal{L}_{\mathrm{F}}$.
Theorem
$\mathbb{N} \backslash S\left(\mathcal{L}_{\mathrm{F}}\right)=(4\lfloor n \varphi\rfloor+3 n+2)_{n \geq 0}$.

Final example of GBS's

Theorem

Let x_{F} be the Fibonacci word, and let w be any word in the Fibonacci language \mathcal{L}_{F}. Let Y be the sequence of positions of the occurrences of w in x_{F}. Then Y is a generalized Beatty sequence, i.e., for all $n \geq 0 Y(n+1)=p\lfloor n \varphi\rfloor+q n+r$ with parameters p, q, r, which can be explicitly computed.

Final example of GBS's

Theorem

Let x_{F} be the Fibonacci word, and let w be any word in the Fibonacci language \mathcal{L}_{F}. Let Y be the sequence of positions of the occurrences of w in x_{F}. Then Y is a generalized Beatty sequence, i.e., for all $n \geq 0 Y(n+1)=p\lfloor n \varphi\rfloor+q n+r$ with parameters p, q, r, which can be explicitly computed.

Proof idea: Let $x_{F}=r_{0}(w) r_{1}(w) r_{2}(w) r_{3}(w) \ldots$, written as a concatenation of return words of the word w. Main theorem in [Huang \& Wen, TCS, 2015]:
if we skip $r_{0}(w)$, then the return words occur as the Fibonacci word on the alphabet $\left\{r_{1}(w), r_{2}(w)\right\}$.

THE END

Final treat: Creating triples from pairs

Final treat: Creating triples from pairs

Theorem
Let (V, W) be a complementary pair $V=p A+q I d+r$ and $W=s A+t \mathrm{Id}+u$. Then $\left(V_{1}, V_{2}, V_{3}\right)$ is a complementary triple, where the three parameters of V_{1} are $(p+q, p, r-p)$, those of V_{2} are $(2 p+q, p+q, r)$, and $V_{3}=W$.

Final treat: Creating triples from pairs

Theorem
Let (V, W) be a complementary pair $V=p A+q I d+r$ and $W=s A+t \operatorname{Id}+u$. Then $\left(V_{1}, V_{2}, V_{3}\right)$ is a complementary triple, where the three parameters of V_{1} are $(p+q, p, r-p)$, those of V_{2} are $(2 p+q, p+q, r)$, and $V_{3}=W$.

Proof idea:

$$
A(\mathbb{N}) \cup B(\mathbb{N})=\mathbb{N}, \quad V(\mathbb{N}) \cup W(\mathbb{N})=\mathbb{N}
$$

Put one into the other \Rightarrow you obtain the disjoint union

$$
V(A(\mathbb{N})) \cup V(B(\mathbb{N})) \cup W(\mathbb{N})=\mathbb{N}
$$

Carlitz-Scoville-Hoggatt Theorem \Rightarrow

$$
A A(n)=A(n)+n-1, A B(n)=2 A(n)+n
$$

庫 Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers 18A (2018), \#A7, 1-14.
D.-P. Allouche, B. Cloitre, V. Shevelev, Beyond odious and evil, Aequationes Math. 90 (2016), 341-353.

圊 C. Ballot, On functions expressible as words on a pair of Beatty sequences, J. Integer Seq. 20 (2017), Art. 17.4.2.

E- L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Fibonacci representations, Fibonacci Quart. 10 (1972), 1-28. [Also see by the same authors: Addendum to the paper: "Fibonacci representations", Fibonacci Quart. 10 (1972), 527-530.
(F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.

R F. M. Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, Theoret. Comput. Sci. 732 (2018), 73-79.
F. M. Dekking, Substitution invariant Sturmian words and binary trees, Integers 18A (2018), \#A7, 1-14.
© A. S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly 84 (1977), 114-115.

睩 A. S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Trans. Amer. Math. Soc. 341 (1994), 639-664.
(A. S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math. 24 (2010), 570-588.
A. S. Fraenkel, From enmity to amity, Amer. Math. Monthly 117 (2010), 646-648.

雷 Y. Huang, Z.-Y. Wen, The sequence of return words of the Fibonacci sequence Theoret. Comput. Sci. 593 (2015), 106--116.

图 C．Kimberling，K．B．Stolarsky，Slow Beatty sequences， devious convergence，and partitional divergence，Amer．Math． Monthly 123 （2016），267－273．

囯 C．Kimberling，Complementary equations and Wythoff sequences，J．Integer Seq． 11 （2008），Art．08．3．3．

國 U．Larsson，N．A．McKay，R．J．Nowakowski，A．A．Siegel， Finding golden nuggets by reduction，Preprint（2015）， https：／／arxiv．org／abs／1510．07155

囲 D．A．Lind，The quadratic field $Q(\sqrt{5})$ and a certain Diophantine equation，Fibonacci Quart． 6 （1968），86－93．

R A．McD．Mercer，Generalized Beatty sequences，Int．J．Math． Math．Sci．， 1 （1978），525－528．
围 J．Lambek，L．Moser，Inverse and complementary sequences of natural numbers，Amer．Math．Monthly 61 （1954），454－458．

圊 On－Line Encyclopedia of Integer Sequences，founded by N．J． A．Sloane，electronically available at http：／／oeis．org．

圊 M. E. Paul, Minimal symbolic flows having minimal block growth, Math. Systems Theory 8 (1975), 309-315.

R R. Tijdeman, On complementary triples of Sturmian bisequences, Indag. Math. 7 (1996), 419-424.
R. Tijdeman, Exact covers of balanced sequences and Fraenkel's conjecture. in Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 467-483.

目 J. V. Uspensky, On a problem arising out of the theory of a certain game, Amer. Math. Monthly 34 (1927), 516-521.

R Z.-X. Wen, Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, European J. Combin. 15 (1994) 587598.

