Generalized Beatty sequences

and complementary triples

Michel Dekking Joint work with Jean-Paul Allouche

17^e Journeés Montoises 25 minutes lecture

September 11, 2018—just before the wine tasting

Beatty sequences

Beatty sequence: $A(n) = \lfloor n\alpha \rfloor$ for $n \ge 1$, where α is a positive real number.

Beatty observed: if $B(n) := \lfloor n\beta \rfloor$, with

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1, \tag{1}$$

then (A(n)) and (B(n)) are complementary sequences.

The sets $\{A(n) : n \ge 1\}$ and $\{B(n) : n \ge 1\}$ are disjoint and their union is the set of positive integers.

Beatty sequences

Beatty sequence: $A(n) = \lfloor n\alpha \rfloor$ for $n \ge 1$, where α is a positive real number.

Beatty observed: if $B(n) := \lfloor n\beta \rfloor$, with

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1, \tag{1}$$

then (A(n)) and (B(n)) are complementary sequences.

The sets $\{A(n) : n \ge 1\}$ and $\{B(n) : n \ge 1\}$ are disjoint and their union is the set of positive integers.

Example $\alpha = \varphi = \frac{1+\sqrt{5}}{2}$ the golden ratio. $(\lfloor n\varphi \rfloor)_{n\geq 1}$ and $(\lfloor n\varphi^2 \rfloor)_{n\geq 1}$ are complementary. $A = (1, 3, 4, 6, 8, ...,), \quad B = (2, 5, 7, 10, 13, ...).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Carlitz-Scoville-Hoggatt

Consider the monoid generated by $(A(n))_{n\geq 1}$ and $(B(n))_{n\geq 1}$ for the composition of sequences.

Choose $\alpha = \varphi = \frac{1+\sqrt{5}}{2}$.

Theorem (Carlitz-Scoville-Hoggatt)

Let $U = (U(n))_{n \ge 1}$ be a composition of the sequences $A = (\lfloor n\varphi \rfloor)_{n \ge 1}$ and $B = (\lfloor n\varphi^2 \rfloor)_{n \ge 1}$, containing *i* occurrences of *A* and *j* occurrences of *B*, then for all $n \ge 1$

$$U(n) = F_{i+2j}A(n) + F_{i+2j-1}n - \lambda_U,$$

where F_k are the Fibonacci numbers ($F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$) and λ_U a constant.

Carlitz-Scoville-Hoggatt

Consider the monoid generated by $(A(n))_{n\geq 1}$ and $(B(n))_{n\geq 1}$ for the composition of sequences.

Choose $\alpha = \varphi = \frac{1+\sqrt{5}}{2}$.

Theorem (Carlitz-Scoville-Hoggatt)

Let $U = (U(n))_{n \ge 1}$ be a composition of the sequences $A = (\lfloor n\varphi \rfloor)_{n \ge 1}$ and $B = (\lfloor n\varphi^2 \rfloor)_{n \ge 1}$, containing *i* occurrences of *A* and *j* occurrences of *B*, then for all $n \ge 1$

$$U(n) = F_{i+2j}A(n) + F_{i+2j-1}n - \lambda_U,$$

where F_k are the Fibonacci numbers ($F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$) and λ_U a constant.

Example B(B(A(n))) = 5A(n) + 3n - 3 for all $n \ge 1$.

Generalized Beatty sequences

 $(U(n)) = (F_{i+2j}A(n) + F_{i+2j-1}n - \lambda_U)$ is an example of a GBS.

Definition of generalized Beatty sequence V:

 $V(n) = p\lfloor n\alpha \rfloor + qn + r, n = 1, 2, ...$ where p, q, r are integers.

・ロト・日本・モート モー うへぐ

Generalized Beatty sequences

 $(U(n)) = (F_{i+2j}A(n) + F_{i+2j-1}n - \lambda_U)$ is an example of a GBS.

Definition of generalized Beatty sequence V:

 $V(n) = p\lfloor n\alpha \rfloor + qn + r, n = 1, 2, ...$ where p, q, r are integers.

We also admit:

 $V(n) = p\lfloor n\alpha \rfloor + qn + r, n = 0, 1, ...$ where p, q, r are integers.

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n) = \lfloor n\alpha \rfloor$ for $n \ge 1$ be the Beatty sequence of α . Let Id defined by Id(n) = n.

For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$V = pA + q \operatorname{Id} + r \operatorname{and} W = sA + t \operatorname{Id} + u$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

complementary sequences?

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n) = \lfloor n\alpha \rfloor$ for $n \ge 1$ be the Beatty sequence of α . Let Id defined by Id(n) = n.

For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$V = pA + q \operatorname{Id} + r \operatorname{and} W = sA + t \operatorname{Id} + u$$

complementary sequences?

Question 2 For which 9-tuples of integers $(p_1, q_1, r_1, p_2, q_2, r_2, p_3, q_3, r_3)$ the three sequences

$$V_i = p_i A + q_i \operatorname{Id} + r_i, \ i = 1, 2, 3$$

are a complementary triple?

Questions

Question 1 Let α be an irrational number, and let A defined by $A(n) = \lfloor n\alpha \rfloor$ for $n \ge 1$ be the Beatty sequence of α . Let Id defined by Id(n) = n.

For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$V = pA + q \operatorname{Id} + r \operatorname{and} W = sA + t \operatorname{Id} + u$$

complementary sequences?

Question 2 For which 9-tuples of integers $(p_1, q_1, r_1, p_2, q_2, r_2, p_3, q_3, r_3)$ the three sequences

$$V_i = p_i A + q_i \operatorname{Id} + r_i, \ i = 1, 2, 3$$

are a complementary triple?

Complementary triple: three sequences so that the sets they determine are disjoint with union the positive integers.

A Sturmian word w is an infinite word $w = w_0 w_1 w_2 \dots$, in which occur only n + 1 subwords of length n for $n = 1, 2 \dots$

A Sturmian word w is an infinite word $w = w_0 w_1 w_2 \dots$, in which occur only n + 1 subwords of length n for $n = 1, 2 \dots$

Rotations on the circle:

$$w_n = s_{\alpha,\rho}(n) = [(n+1)\alpha + \rho] - [n\alpha + \rho], \quad n = 0, 1, 2, \dots$$

or as

$$w_n = s'_{\alpha,\rho}(n) = \lceil (n+1)\alpha + \rho \rceil - \lceil n\alpha + \rho \rceil, \quad n = 0, 1, 2, \dots$$

A Sturmian word w is an infinite word $w = w_0 w_1 w_2 \dots$, in which occur only n + 1 subwords of length n for $n = 1, 2 \dots$

Rotations on the circle:

$$w_n = s_{\alpha,\rho}(n) = [(n+1)\alpha + \rho] - [n\alpha + \rho], \quad n = 0, 1, 2, \dots$$

or as

$$w_n = s'_{\alpha,\rho}(n) = \lceil (n+1)\alpha + \rho \rceil - \lceil n\alpha + \rho \rceil, \quad n = 0, 1, 2, \dots$$

Homogeneous Sturmian word: $\rho = 0$.

A Sturmian word w is an infinite word $w = w_0 w_1 w_2 \dots$, in which occur only n + 1 subwords of length n for $n = 1, 2 \dots$

Rotations on the circle:

$$w_n = s_{\alpha,\rho}(n) = [(n+1)\alpha + \rho] - [n\alpha + \rho], \quad n = 0, 1, 2, \dots$$

or as

$$w_n = s'_{\alpha,\rho}(n) = \lceil (n+1)\alpha + \rho \rceil - \lceil n\alpha + \rho \rceil, \quad n = 0, 1, 2, \dots$$

Homogeneous Sturmian word: $\rho = 0$.

Example $\alpha = \frac{1+\sqrt{5}}{2}, \rho = 0$. Here w = 2122121221221212..., obtained by replacing 0 by 2 in the unique fixed point $x_{\rm F}$ of the Fibonacci morphism $0 \rightarrow 01, 1 \rightarrow 0$.

・ロト・4週ト・4回ト・回・ のへの

How to recognize a golden mean GBS

$$\alpha = \varphi = \frac{1+\sqrt{5}}{2}$$
, the golden ratio.

Lemma

Let $V = (V(n))_{n\geq 1}$ be the generalized Beatty sequence defined by $V(n) = p(\lfloor n\varphi \rfloor) + qn + r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci sequence on the alphabet $\{2p + q, p + q\}$.

How to recognize a golden mean GBS

$$\alpha = \varphi = \frac{1+\sqrt{5}}{2}$$
, the golden ratio.

Lemma

Let $V = (V(n))_{n\geq 1}$ be the generalized Beatty sequence defined by $V(n) = p(\lfloor n\varphi \rfloor) + qn + r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci sequence on the alphabet $\{2p + q, p + q\}$.

Proof: $V(n+1)-V(n) = p[A(n+1)-A(n)]+q = p[\lfloor (n+1)\varphi \rfloor - \lfloor n\varphi \rfloor]+q.$

Partial answer to Question 1, part I

Theorem

Let $\alpha = \varphi$. Then there are no more than two increasing solutions with V(1) = 1 to the complementary pair problem: (p, q, r, s, t, u) = (1,0,0,1,1,0) and (p, q, r, s, t, u) = (-1,3,-1,1,2,0).

Partial answer to Question 1, part I

Theorem

Let $\alpha = \varphi$. Then there are no more than two increasing solutions with V(1) = 1 to the complementary pair problem: (p, q, r, s, t, u) = (1,0,0,1,1,0) and (p, q, r, s, t, u) = (-1,3,-1,1,2,0).

The solutions are the two Beatty pairs $([n\varphi]), ([n\varphi^2])$ and $([n(3-\varphi)]), ([n(\varphi+2)]).$

Partial answer to Question 1, part II

Theorem

[Odd Fibonacci] Let $\alpha = \varphi$. Any solution (p, q, r, s, t, u) to the complementary pair problem with p > 0 has to satisfy: p divides some Fibonacci number of odd index, i.e., p divides some number in the set $\{1, 2, 5, 13, 34, \ldots\}$.

Partial answer to Question 1, part II

Theorem

[Odd Fibonacci] Let $\alpha = \varphi$. Any solution (p, q, r, s, t, u) to the complementary pair problem with p > 0 has to satisfy: p divides some Fibonacci number of odd index, i.e., p divides some number in the set $\{1, 2, 5, 13, 34, \ldots\}$.

Corollary

There are no solutions to the golden mean complementary pair problem if -1 is not a square modulo p, i.e., if p does not belong to the sequence $1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, \ldots$

Proof sketch of the "odd Fibonacci" Theorem

Consider the densities of V and W in $\mathbb{N} \Rightarrow$ *necessary* condition for $(pA + q \operatorname{Id} + r, sA + t \operatorname{Id} + u)$ to be a complementary pair is that

$$\frac{1}{p\alpha + q} + \frac{1}{s\alpha + t} = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof sketch of the "odd Fibonacci" Theorem

Consider the densities of V and W in $\mathbb{N} \Rightarrow$ *necessary* condition for $(pA + q \operatorname{Id} + r, sA + t \operatorname{Id} + u)$ to be a complementary pair is that

$$\frac{1}{p\alpha + q} + \frac{1}{s\alpha + t} = 1$$

Lemma

٠

Let $\alpha = \varphi$. A necessary condition for the pair $V = pA + q \operatorname{Id} + r$ and $W = sA + t \operatorname{Id} + u$ to be a complementary pair is that $p \neq 0$ is a solution to the generalized Pell equation

$$5p^2x^2-4x=y^2, \quad x,y\in\mathbb{Z}$$

Another example of GBS's

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

Another example of GBS's

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

A homomorphism of \mathcal{L} into the natural numbers is a map $S: \mathcal{L} \to \mathbb{N}$ satisfying S(vw) = S(v) + S(w), for all $v, w \in \mathcal{L}$.

Another example of GBS's

Let ${\cal L}$ be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation.

A homomorphism of \mathcal{L} into the natural numbers is a map $S: \mathcal{L} \to \mathbb{N}$ satisfying S(vw) = S(v) + S(w), for all $v, w \in \mathcal{L}$.

Let \mathcal{L}_{F} be the Fibonacci language, i.e., the set of all words occurring in $x_{\mathrm{F}}=010010100100\ldots$

Theorem

[D.,TCS,2018]

Let $S : \mathcal{L}_F \to \mathbb{N}$ be a homomorphism. Define a = S(0), b = S(1). Then $S(\mathcal{L}_F)$ is the union of the two generalized Beatty sequences $((a-b)\lfloor n\varphi \rfloor + (2b-a)n)$ and $((a-b)\lfloor n\varphi \rfloor + (2b-a)n + a - b)$.

Homomorphisms and complementary triples

When is $\mathbb{N} \setminus S(\mathcal{L}_F)$ also a GBS?

Actually this happens for only a few homomorphisms S!

Main example Let S be given by S(0) = 3 and S(1) = 1. Then $S(\mathcal{L}_F)$ is $(2\lfloor n\varphi \rfloor - n)_{n\geq 1} = 1, 4, 5, 8, 11, 12, 15, 16,$ together with $(2\lfloor n\varphi \rfloor - n + 2)_{n\geq 1} = 3, 6, 7, 10, 13, 14, 17, 18, ...,$ and $\mathbb{N} \setminus S(\mathcal{L}_F) = 2, 9, 20, 27, 38, 49,$

Homomorphisms and complementary triples

When is $\mathbb{N} \setminus S(\mathcal{L}_F)$ also a GBS?

Actually this happens for only a few homomorphisms S!

Main example Let S be given by S(0) = 3 and S(1) = 1. Then $S(\mathcal{L}_F)$ is $(2\lfloor n\varphi \rfloor - n)_{n\geq 1} = 1, 4, 5, 8, 11, 12, 15, 16,$ together with $(2\lfloor n\varphi \rfloor - n + 2)_{n\geq 1} = 3, 6, 7, 10, 13, 14, 17, 18, ...,$ and $\mathbb{N} \setminus S(\mathcal{L}_F) = 2, 9, 20, 27, 38, 49,$

S(11) = 2, but $11 \not\prec \mathcal{L}_F$. S(10101) = 9, but $10101 \not\prec \mathcal{L}_F$.

Homomorphisms and complementary triples

When is $\mathbb{N} \setminus S(\mathcal{L}_F)$ also a GBS?

Actually this happens for only a few homomorphisms S!

Main example Let S be given by S(0) = 3 and S(1) = 1. Then $S(\mathcal{L}_F)$ is $(2\lfloor n\varphi \rfloor - n)_{n\geq 1} = 1, 4, 5, 8, 11, 12, 15, 16,$ together with $(2\lfloor n\varphi \rfloor - n + 2)_{n\geq 1} = 3, 6, 7, 10, 13, 14, 17, 18, ...,$ and $\mathbb{N} \setminus S(\mathcal{L}_F) = 2, 9, 20, 27, 38, 49,$

$$\begin{split} \mathrm{S}(11) &= 2 \text{, but } 11 \not\prec \mathcal{L}_{\mathrm{F}}.\\ \mathrm{S}(10101) &= 9 \text{, but } 10101 \not\prec \mathcal{L}_{\mathrm{F}}. \end{split}$$

Theorem

$$\mathbb{N} \setminus \mathrm{S}(\mathcal{L}_{\mathrm{F}}) = (4\lfloor n \varphi \rfloor + 3n + 2)_{n \geq 0}$$

Final example of GBS's

Theorem

Let x_F be the Fibonacci word, and let w be any word in the Fibonacci language \mathcal{L}_F . Let Y be the sequence of positions of the occurrences of w in x_F . Then Y is a generalized Beatty sequence, i.e., for all $n \ge 0$ $Y(n+1) = p\lfloor n\varphi \rfloor + qn + r$ with parameters p, q, r, which can be explicitly computed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Final example of GBS's

Theorem

Let x_F be the Fibonacci word, and let w be any word in the Fibonacci language \mathcal{L}_F . Let Y be the sequence of positions of the occurrences of w in x_F . Then Y is a generalized Beatty sequence, i.e., for all $n \ge 0$ $Y(n+1) = p \lfloor n\varphi \rfloor + qn + r$ with parameters p, q, r, which can be explicitly computed.

Proof idea: Let $x_F = r_0(w)r_1(w)r_2(w)r_3(w)...$, written as a concatenation of return words of the word w.

Main theorem in [Huang & Wen, TCS, 2015]:

if we skip $r_0(w)$, then the return words occur as the Fibonacci word on the alphabet $\{r_1(w), r_2(w)\}$.

THE END

Final treat: Creating triples from pairs

<ロ>

Final treat: Creating triples from pairs

Theorem

Let (V, W) be a complementary pair $V = pA + q \operatorname{Id} + r$ and $W = sA + t \operatorname{Id} + u$. Then (V_1, V_2, V_3) is a complementary triple, where the three parameters of V_1 are (p + q, p, r - p), those of V_2 are (2p + q, p + q, r), and $V_3 = W$.

Final treat: Creating triples from pairs

Theorem

Let (V, W) be a complementary pair $V = pA + q \operatorname{Id} + r$ and $W = sA + t \operatorname{Id} + u$. Then (V_1, V_2, V_3) is a complementary triple, where the three parameters of V_1 are (p + q, p, r - p), those of V_2 are (2p + q, p + q, r), and $V_3 = W$.

Proof idea:

$$A(\mathbb{N}) \cup B(\mathbb{N}) = \mathbb{N}, \quad V(\mathbb{N}) \cup W(\mathbb{N}) = \mathbb{N}.$$

Put one into the other \Rightarrow you obtain the disjoint union

$$V(A(\mathbb{N}))\cup V(B(\mathbb{N}))\,\cup\, W(\mathbb{N})=\mathbb{N}.$$

 ${\sf Carlitz}{\text{-}}{\sf Scoville}{\text{-}}{\sf Hoggatt} \,\,{\sf Theorem} \,\, \Rightarrow \,\,$

$$AA(n) = A(n) + n - 1, AB(n) = 2A(n) + n.$$

- Michel Dekking, Substitution invariant Sturmian words and binary trees, *Integers* **18A** (2018), #A7, 1-14.
- J.-P. Allouche, B. Cloitre, V. Shevelev, Beyond odious and evil, *Aequationes Math.* **90** (2016), 341–353.
- C. Ballot, On functions expressible as words on a pair of Beatty sequences, *J. Integer Seq.* **20** (2017), Art. 17.4.2.
- L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Fibonacci representations, *Fibonacci Quart.* **10** (1972), 1–28. [Also see by the same authors: Addendum to the paper: "Fibonacci representations", *Fibonacci Quart.* **10** (1972), 527–530.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- F. M. Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, *Theoret. Comput. Sci.* **732** (2018), 73–79.

- F. M. Dekking, Substitution invariant Sturmian words and binary trees, *Integers* **18A** (2018), #A7, 1-14.
- A. S. Fraenkel, Complementary systems of integers, *Amer. Math. Monthly* **84** (1977), 114–115.
- A. S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, *Trans. Amer. Math. Soc.* **341** (1994), 639–664.
- A. S. Fraenkel, Complementary iterated floor words and the Flora game, *SIAM J. Discrete Math.* **24** (2010), 570–588.
- A. S. Fraenkel, From enmity to amity, *Amer. Math. Monthly* 117 (2010), 646–648.
- Y. Huang, Z.-Y. Wen, The sequence of return words of the Fibonacci sequence *Theoret. Comput. Sci.* **593** (2015), 106--116.

- C. Kimberling, K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly 123 (2016), 267–273.
- C. Kimberling, Complementary equations and Wythoff sequences, *J. Integer Seq.* **11** (2008), Art. 08.3.3.
- U. Larsson, N. A. McKay, R. J. Nowakowski, A. A. Siegel, Finding golden nuggets by reduction, Preprint (2015), https://arxiv.org/abs/1510.07155
- D. A. Lind, The quadratic field $Q(\sqrt{5})$ and a certain Diophantine equation, *Fibonacci Quart.* **6** (1968), 86–93.
- A. McD. Mercer, Generalized Beatty sequences, *Int. J. Math. Math. Sci.*, **1** (1978), 525–528.
- J. Lambek, L. Moser, Inverse and complementary sequences of natural numbers, *Amer. Math. Monthly* **61** (1954), 454–458.
- On-Line Encyclopedia of Integer Sequences, founded by N. J.
 A. Sloane, electronically available at http://oeis.org.

- M. E. Paul, Minimal symbolic flows having minimal block growth, *Math. Systems Theory* **8** (1975), 309–315.
- R. Tijdeman, On complementary triples of Sturmian bisequences, *Indag. Math.* **7** (1996), 419–424.
- R. Tijdeman, Exact covers of balanced sequences and Fraenkel's conjecture. in *Algebraic number theory and Diophantine analysis (Graz, 1998)*, de Gruyter, Berlin, 2000, pp. 467–483.
- J. V. Uspensky, On a problem arising out of the theory of a certain game, *Amer. Math. Monthly* **34** (1927), 516–521.
- Z.-X. Wen, Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, European J. Combin. 15 (1994) 587598.