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The set of the star-free languages is the smallest set:
� containing the finite languages (including the empty language),
� closed under finite union, concatenation and complement.

Are the following languages star-free?

� A∗ is star-free [= ∅c ]
� (ab)∗ is star-free [= (bA∗ ∪ A∗a ∪ A∗aaA∗ ∪ A∗bbA∗)c ]
� (((ab)∗a((bca∗)c)∗a(a(ba)∗)c)∗aaab(bab)c(ab)∗)∗
� (aa)∗
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Varieties and identities



A variety of languages is a class of rational languages

ν(A1) ∪ ν(A2) ∪ ν(A3) . . .

such that:

� for each alphabet Ai , ν(Ai ) is a boolean algebra over Ai
(closed under finite union, intersection, complement)

� for each alphabet Ai , ν(Ai ) is closed under quotient:
if L ∈ ν(Ai ) and u ∈ A∗

i then Lu−1 and u−1L ∈ ν(Ai )

� it is closed under inverse image: for each monoid morphism
ϕ : A∗

i → A∗
j , L ∈ ν(Aj) implies ϕ−1(L) ∈ ν(Ai )

The set of the star-free languages is the smallest set:
� containing the finite languages (including the empty language),
� closed under finite union, concatenation and complement.
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Varieties and identities



d(u, v) = 2−n

where n: size of a smallest deterministic complete automaton A
such that u ∈ L(A) and v /∈ L(A).

d is an ultrametric distance:
� d(u, v) = 0 iff u = v
� d(u, v) = d(v , u)
� d(u, v) 6 max(d(u,w), d(w , v))
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A distance on the set of finite words



d(u, v) = 2−n where n is the size of a smallest deterministic com-
plete automaton A such that u ∈ L(A) and v /∈ L(A).

Example 1: u 6= v?
At least 2−(|u|+1)

Example 2: a ∈ A - a99 and a100?
1
4

Example 3: u ∈ A∗, n ∈ N - un! and u(n+1)!?
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Profinite monoid Â∗ :
completion of A∗ with respect to the distance d .

Definition

� Monoid if u and v sequences of words, (u.v)n = unvn

� Metric space
� A∗ dense subset
� Compact

8/19

The profinite world



Idempotent power of u ∈ A∗

uω = limn→∞ un!
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Profinite identity: u = v with u, v ∈ Â∗.

Rational language L ∈ A∗ −→ L ∈ Â∗ is the closure of L.

A language L satisfies a profinite identity u = v with u, v ∈ Â∗, if
for all profinite words w ,w ′, wuw ′ ∈ L if and only if wvw ′ ∈ L.

Example: for all u, v ∈ {a, b}∗ such that |u|a = |v |a and
|u|b = |v |b, u ∈ L if and only if v ∈ L
Commutative languages: If wuvw ′ ∈ L then wvuw ′ ∈ L
ab = ba

10/19

Identities



Profinite identity: u = v with u, v ∈ Â∗.
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Rational language L ∈ A∗ −→ L ∈ Â∗ is the closure of L.
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Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)
|A| > 2
u0, u1, . . . an enumeration of the words of A∗

v0 = u0, vn+1 = (vnun+1vn)(n+1)!

ρA = limn→∞ vn

Languages with a sink state: ρAu = uρA = ρA
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A class of languages is a variety if and only if it is defined by a
set of profinite identities.

Theorem
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Correspondance
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The set of the star-free languages is the smallest set:
� containing the finite languages (including the empty language),
� closed under finite union, concatenation and complement.

A language is star-free if and only if it satisfies the profinite
identity xω+1 = xω.

Theorem [Schützenberger]

→ (ab)∗ is star-free.
→ (aa)∗ is not star-free.
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� One can decide if a given rational language is star-free.

� (aa)∗ is not star-free.

� Generalised star-height: minimal number of nested stars in a
generalised expression (∪, ·, c , ∗) representing a rational language.

Examples of rational languages of a given generalised
star-height?

−→ OPEN : we do not even know if there exist a rational language
with star-height at least 2.
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Given two profinite words u, v , a rational language L satisfies

u → v

if u ∈ L̄ implies v ∈ L̄

Definition

a, b ∈ A
Equation ab → aba

{L ⊆ A∗ | ab /∈ L} ∪ {L ⊆ A∗ | ab, aba ∈ L}

16/19
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Given two profinite words u, v , a rational language L satisfies

u 6 v

if for all w ,w ′ ∈ Â∗,wuw ′ ∈ L̄ implies wvw ′ ∈ L̄

Definition

a, b ∈ A
Equation ab 6 aba

{L ⊆ A∗ | for all w ,w ′ ∈ A∗, if wabw ′ ∈ L then wabaw ′ ∈ L}
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Given two profinite words u, v , a rational language L satisfies

u = v

if for all w ,w ′ ∈ Â∗,wuw ′ ∈ L̄ if and only if wvw ′ ∈ L̄

Definition

a, b ∈ A
Equation ab = aba

{L ⊆ A∗ | for all w ,w ′ ∈ A∗, wabw ′ ∈ L iff wabaw ′ ∈ L}
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Classes of rational languages
� Lattice (union, intersection): →
� Boolean algebra (lattice, complement): ↔
� Lattice closed under quotient: 6
� Boolean algebra closed under quotient: =

Theorem [Gehrke, Grigorieff, Pin 2008]

quotient : u−1Lv−1 = {w | uwv ∈ L}

17/19

Equations



Pu =
⋃

p prefix of u
u∗p and Su =

⋃
s suffix of u

su∗

xωyω = 0 for x , y ∈ A∗ such that xy 6= yx (E1)

xωy = 0 for x , y ∈ A∗ such that y /∈ Px (E2)

yxω = 0 for x , y ∈ A∗ such that y /∈ Sx (E3)

xω 6 1 for x ∈ A∗ (E4)

x ` ↔ xω+` for x ∈ A∗, ` > 0 (E5)

x → x ` for x ∈ A∗, ` > 0 (E6)

xα ↔ xβ for all (α, β) ∈ Γ (E7)

DECIDABLE
18/19

Equations for u∗ [joint work with C.Paperman]
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xα ↔ xβ for all (α, β) ∈ Γ (E7)

An example:

(a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 . . .

2 ≡6 4 since gcd(2, 6) = 2 = gcd(4, 6)
(u6)∗u2 ⊆ L if and only if (u6)∗u4 ⊆ L
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r ≡m s if and only if gcd(r ,m) = gcd(s,m)
(um)∗ur ⊆ L if and only if (um)∗us ⊆ L

xα ↔ xβ for α and β representing sequences of
integers (km + r)k and (km + s)k with r ≡m s...
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(a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 . . .

Equivalence relation over the integers
r ≡m s if and only if gcd(r ,m) = gcd(s,m)
(um)∗ur ⊆ L if and only if (um)∗us ⊆ L

xα ↔ xβ for α and β profinite numbers in N̂ = {̂a}∗

satisfying some specific conditions...
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xα ↔ xβ for all (α, β) ∈ Γ (E7)

An example:

(a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 . . .

Γ is the set of all the pairs of profinite numbers (dzP , dpzP) s.t.:
� P is a cofinite sequence of prime numbers {p1, p2, . . .}
� zP = limn(p1p2 . . . pn)n!

� p ∈ P
� if q divides d then q /∈ P

xα ↔ xβ for all (α, β) ∈ Γ (E7)
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� One can decide if a given rational language is star-free.

� (aa)∗ is not star-free.

� Generalised star-height: minimal number of nested stars in a
generalised expression (∪, ·, c , ∗) representing a rational language.

Examples of rational languages of a given generalised
star-height?

−→ OPEN : we do not even know if there exist a rational language
with star-height at least 2.

Mathematical Fondations of Automata Theory -
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
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