On the group of a rational maximal bifix code

Alfredo Costa, Centre for Mathematics, University of Coimbra

joint work with Jorge Almeida, Revekka Kyriakoglou & Dominique Perrin

17e journées montoises d’informatique théorique — 2018
• Relativization of maximal bifix codes:

\[X = Z \cap F \]

of a maximal bifix code \(Z \) by a (uniformly) recurrent set \(F \)

• Relativization of descriptors of maximal bifix codes:
 • \(d(Z) \cong d_F(X) \)
 • \(G(Z) \cong G_F(X) \)

• We give necessary and sufficient conditions for

\[G(Z) \cong G_F(X) \]

• Methodological novelty: the use of free profinite monoids
The syntactic monoid $M(L)$ of a language L is the transition monoid of the minimal automaton of L

We denote the map $A^* \to M(L)$ by η_L

e.g., $L = \{aa, ab, ba\}^*$
Green’s relations

1. \(u \mathcal{R} v \iff uM = vM \)
2. \(u \mathcal{L} v \iff Mu = Mv \)
3. \(u \mathcal{J} v \iff MuM = MvM \)
4. \(u \leq \mathcal{J} v \iff MuM \subseteq MvM \)
5. \(\mathcal{H} = \mathcal{R} \cap \mathcal{L} \)
6. In a finite monoid,

\[\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \lor \mathcal{L} \]

All monoids we consider have this property.

For such monoids, if a \(\mathcal{J} \)-class contains an idempotent, then its \(\mathcal{H} \)-classes containing idempotents are isomorphic subgroups.

The abstract semigroup thus defined is the Schützenberger group of the \(\mathcal{J} \)-class.
Green’s relations

1. \(u \mathcal{R} v \iff uM = vM \)
2. \(u \mathcal{L} v \iff Mu = Mv \)
3. \(u \mathcal{J} v \iff MuM = MvM \)
4. \(u \leq_{\mathcal{J}} v \iff MuM \subseteq MvM \)
5. \(\mathcal{H} = \mathcal{R} \cap \mathcal{L} \)
6. In a finite monoid,

\[
\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \lor \mathcal{L}
\]

All monoids we consider have this property.

7. For such monoids, if a \(\mathcal{J} \)-class contains an idempotent, then its \(\mathcal{H} \)-classes containing idempotents are isomorphic subgroups.

The abstract semigroup thus defined is the Schützenberger group of the \(\mathcal{J} \)-class.
Maximal bifix codes

A bifix code X of A^* is maximal if

$$X \subseteq Y \text{ and } Y \text{ is bifix} \implies X = Y$$

Motivation

- Perhaps the most studied and “tractable” class of codes.
- Important case: if $M(X^*)$ is a group, then X is a maximal bifix code, called a group code.
A bifix code X is F-maximal if $X \subseteq F$ and

$$X \subseteq Y \subseteq F \text{ and } Y \text{ is bifix} \implies X = Y$$

Theorem (Berstel & De Felice & Perrin & Reutenauer & Rindone; 2012)

If Z is maximal bifix, then $X = Z \cap F$ is...

- ... **F-maximal bifix** if F is recurrent
- ... **finite** if F is uniformly recurrent
If X is a rational maximal bifix code, then the degree of X is the rank $d(X)$ of the minimum ideal $J(X)$ of $M(X^*)$.

Theorem (The five authors of the 2012 paper + Dolce & Leroy; 2015)

If Z is a maximal bifix code and F is a tree set, then $X = Z \cap F$ is a basis of a subgroup of index $d(Z)$ of the free group $FG(A)$.
Let X be a rational maximal bifix code.

The F-minimum \mathcal{J}-class of $M(X^*)$, denoted $J_F(X)$, is the \mathcal{J}-class of $M(X^*)$ that is \mathcal{J}-minimum among the \mathcal{J}-classes intersecting $\eta_{X^*}(F)$.

The F-degree of X is the rank $d_F(X)$ of $J_F(X)$.
The group of Z, denoted $G(Z)$, is the Schützenberger group of $J(Z)$.

The F-group of X, denoted $G_F(X)$, is the Schützenberger group of $J_F(X)$.

- $G(Z)$ is a permutation group of degree $d(Z)$
- $G_F(X)$ is a permutation group of degree $d_F(X)$

We want to relate $G(Z)$ with $G_F(X)$...

Theorem (Berstel & De Felice & Perrin & Reutenauer & Rindone; 2012)

If Z is a group code and F is Sturmian, then $G(Z) \simeq G_F(X)$ and $d(Z) = d_F(X)$.

(the theorem does not hold if we just replace “Sturmian” by “uniformly recurrent”, or “group code” by “maximal bifix code”)
F-groups

The group of Z, denoted $G(Z)$, is the Schützenberger group of $J(Z)$.

The F-group of X, denoted $G_F(X)$, is the Schützenberger group of $J_F(X)$.

- $G(Z)$ is a permutation group of degree $d(Z)$
- $G_F(X)$ is a permutation group of degree $d_F(X)$

We want to relate $G(Z)$ with $G_F(X)$...

Theorem (Berstel & De Felice & Perrin & Reutenauer & Rindone; 2012)

If Z is a group code and F is Sturmian, then $G(Z) \simeq G_F(X)$ and $d(Z) = d_F(X)$. (the theorem does not hold if we just replace “Sturmian” by “uniformly recurrent”, or “group code” by “maximal bifix code”)
- $Z = \{aa, ab, ba, bb\}$
- $F = \text{“Fibonacci set”}$

Minimum automaton of X^*, where $X = Z \cap F$:

$G(Z) \simeq G_F(X) \simeq \mathbb{Z}/2\mathbb{Z}$
The profinite completion of A^*

If x, y are distinct elements of A^*, then there is a finite quotient $M = A^*/\sim$ separating x and y (i.e. $x \not\sim y$).

Let $r(x, y)$ be the smallest possible cardinal for M.

$$d(x, y) = 2^{-r(x, y)}$$

For this metric, let \widehat{A}^* be the metric completion of A^*.

\widehat{A}^* is a topological monoid, with a profinite topology.

More: \widehat{A}^* is the free profinite monoid generated by A.
The group $G(F)$

If F is recurrent, then there is a \mathcal{J}-minimum \mathcal{J}-class contained in \overline{F}, denoted $J(F)$.

The group $G(F)$ is the (topological!) Schützenberger group of $J(F)$.
Tree and connected case

Theorem (Almeida & Costa; 2017)

If F is a tree set, then $G(F)$ is a free profinite group of rank $|A|$.

(the proof uses the “Return Theorem”)

More precisely:

if F is a tree set, then $\pi| : G(F) \to \widehat{FG}(A)$ is an isomorphism:

More generally, $\pi| : G(F) \to \widehat{FG}(A)$ is onto if F is connected.
We say that a code X is:

1. **F-charged** if
 \[\hat{\eta}_{X^*}(G(F)) = G(X) \]

2. **weakly F-charged** if
 \[\hat{\eta}_{X^*}(G(F)) = G_F(X) \]
We say that a code X is:

1. **F-charged** if
 $\hat{\eta}_{X^*}(G(F)) = G(X)$

2. **weakly F-charged** if
 $\hat{\eta}_{X^*}(G(F)) = G_F(X)$
Theorem (Almeida & Costa & Kyriakoglou & Perrin; 2018)

Let:
- F recurrent
- Z rational maximal bifix code

Suppose also that $X = Z \cap F$ is rational.

The following conditions are equivalent:
- Z is F-charged
- $d_F(X) = d(Z)$, $G_F(X) \cong G(Z)$ and X is weakly F-charged

Additionally: if F is uniformly recurrent, then the equality $d_F(X) = d(Z)$ is redundant in the second condition.
Necessary and sufficient conditions for $G(Z) \simeq G_F(Z \cap F)$

Theorem (Almeida & Costa & Kyriakoglou & Perrin; 2018)

Let:

- F recurrent
- Z rational maximal bifix code

Suppose also that $X = Z \cap F$ is rational.

The following conditions are equivalent:

- Z is F-charged
- $d_F(X) = d(Z)$, $G_F(X) \simeq G(Z)$ and X is weakly F-charged

Additionally: if F is uniformly recurrent, then the equality $d_F(X) = d(Z)$ is redundant in the second condition.
Group codes are “connected”-charged

Fact
If Z is a group code and F is connected, then Z is F-charged.

Proof.

\[M(Z^*) = G(Z) \]
Group codes are “connected”-charged

Fact
If Z is a group code and F is connected, then Z is F-charged.

Proof.

\[
\begin{align*}
\hat{A}^* &\quad G(F) \\
\hat{\eta}_Z &\quad \pi \quad \pi| \\
M(Z^*) &\quad FG(A) \\
M(Z^*) = G(Z) &
\end{align*}
\]
Primitive substitutions

When $F = F_\varphi$ is described by a primitive substitution φ, we have an algorithm to decide if X is (weakly) F-charged: this is done via a profinite presentation for $G(F_\varphi)$, obtained by Almeida & Costa (2013).

Example

- F_τ: the Prouhet-Thue-Morse set, where
 \[\tau : a \mapsto ab, \quad b \mapsto ba \]

- Z: group code over $\{a, b\}$ generating the stabilizer of 1 via
 \[a \mapsto (123), \quad b \mapsto (345) \]

- $G(Z) = A_5$

- Z is F_τ-charged
\[Z = \{aa, ab, ba\} \cup b^2(a^+b)*b \]

\[F = A^* \setminus A^*ab(b^2)*aA^* \]

Z is maximal bifix, but not a group code

F is recurrent, but not uniformly

Z is *F*-charged and \(G(Z) \sim G_F(X) \sim S_3 \)
\[Z = \{aa, ab, ba\} \cup b^2(a+b)^*b \]

- \(F = \text{“Fibonacci set”} \)

\(Z \) is maximal bifix, but not a group code
\(F \) is Sturmian

\(Z \) is not \(F \)-charged and \(G(Z) \neq G_F(X) \)
We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

 $$G(Z) \cong G_F(Z \cap F)$$

 if F is connected and Z is group code

 uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement
 \[G(Z) \cong G_F(Z \cap F) \text{ if } F \text{ is connected and } Z \text{ is group code} \]
 uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

$$G(Z) \cong G_F(Z \cap F)$$ if F is connected and Z is group code

uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

 $$G(Z) \cong G_F(Z \cap F)$$

 if F is connected and Z is group code

 uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

$$G(Z) \cong G_F(Z \cap F) \text{ if } F \text{ is connected and } Z \text{ is group code}$$

uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

 \[G(Z) \cong G_F(Z \cap F) \] if F is connected and Z is group code

 uses no “profinite jargon“

- the definition of “F-charged” gives a comprehensive framework to improve
 the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)
Conclusion: profinite is good!

We gave the first relevant “external” applications of the profinite Schützenberger group $G(F)$ of a uniformly recurrent set.

- the statement

 $$G(Z) \cong G_F(Z \cap F)$$
 if F is connected and Z is group code

 uses no “profinite jargon”

- the definition of “F-charged” gives a comprehensive framework to improve the latter

- the profinite group $G(F)$ serves as a sort of universal cover for F-groups

- “profinite stuff” facilitates synthetic statements

- advantages of the profinite monoid for proofs:
 - more “conceptual” proofs (diagram style)
 - enhanced combinatorics (“pseudowords” can be idempotent!)