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Introduction
Fibonacci / Zeckendorf numeration system

A positive integer n = Fmk + Fmk−1 + · · ·+ Fm0 , where

mk > mk−1 > · · · > m0 ≥ 2, F0 = 0, F1 = 1, F2 = 1,
and Fm+2 = Fm+1 + Fm for all m ≥ 0.

If for all i ≥ 0, mi+1 −mi ≥ 2, we have a canonic representation
of n which is unique.

Actually this system was invented by a dutch mathematician,
Lekkerkerker, in 1952.

Example
16 = 13 + 3 = F7 + F4 = [100100]F
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Legal representations
There are multiple representations for the same integer obtained by
using

· · · 100 · · · ←→ · · · 011 · · ·

Example
16 = 13 + 3 = 8 + 5 + 3 = 8 + 5 + 2 + 1 = 13 + 2 + 1
16 = [100100]F = [11100]F = [11011]F = [100011]F

Valid representations
We allow more freedom to the previous system by using

· · · k0l · · · ←→ · · · (k − 1) 1(l + 1) · · ·

for all k > 0, l ≥ 0.

We go from kFm+1 + lFm−1 to (k − 1)Fm+1 + Fm + (l + 1)Fm−1.
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Example
16 = [100100]F = [11100]F = [11011]F = [100011]F are legal
representations.
16 = [10121]F , [1221]F , [20000]F are rerpresentations obtained by
the previous transformation.

There are 7 valid representations of 16. We note V (16) = 7.
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Figure: First 100 values of V (n)
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Notations and some usual notions

The lenght of a finite word u is denoted by |u|.

uk is the concatenation u · · · u︸ ︷︷ ︸
k

.

The i ’th symbol of a finite or infinite word u is denoted by
u[i ], so that u = u[1]u[2] · · · .

A factor u[i + 1]u[i + 2] · · · u[j] of a finite or infinite word u is
denoted by u(i ..j].

Then, for j ≥ 0, the word u(0..j] is the prefix of u of length j .
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The Fibonacci sequence

We define Fibonacci words with the binary alphabet {a, b} as
follow: s−1 = b, s0 = a, sn+1 = snsn−1 for all n ≥ 0.

s1 = ab, s2 = aba, s3 = abaab, s4 = abaababa,
and so on.

The length of sn is the Fibonacci number Fn+2.

The infinite Fibonacci word is

s = lim
n→∞

sn = abaababaabaababaababa · · ·

We note s[1] = a.
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In the Fibonacci numeration system, a non-negative integer
N < Fn+3 is represented as

N =
∑

0≤i≤n
kiFi+2

where ki ∈ {0, 1} for i ≥ 0.

This is the same system we studied but written differently.

We have a unique representation of N if the following
condition holds:

for i ≥ 1, if ki = 1, then ki−1 = 0

N =
∑

0≤i≤n kiFi+2 is represented by N = [kn · · · k0]F .
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Lemma 1

For all k0, . . . , kn such that ki ∈ {0, 1}, the word skn
n skn−1

n−1 · · · s
k0
0 is

a prefix of the Fibonacci word s.

Then, a representation of N = [kn · · · k0]F is valid if ki ≥ 0 for all i
and s(0..N] = skn

n skn−1
n−1 · · · s

k0
0 .

Example
s(0..14] = (abaab)(aba)(aba)(aba) is a factorization of 14.
Then, the representation 14 = [1300]F is valid.

The number of valid representations of an integer is exactly the
number of factorizations of the corresponding prefix of the
Fibonacci word.
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Classic properties of the Fibonacci word

The Fibonacci word s = abaababa · · ·
is the fixed point of the Fibonacci morphism

µ : a→ ab, b → a

For each n ≥ 1, we have sn = µ(sn−1).
Then Lemma 1 implies that

µ(s(0..N]) = s(0..[kn · · · k00]F ]

For all n, we have s[n] =
{

a, if {n/ϕ2} < 1− 1/ϕ2;
b, otherwise.

Where ϕ = 1+
√
5

2 is the golden ratio and {x} = x −bxc is the

fractional part of x .
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Results

Proposition 1
If s[n] = a, all valid representations of n end with an even number
of 0s. If s[n] = b, all of them end with an odd number of 0s.

Theorem 1
If s[n] = a, then V (n) = dn/ϕ2e,or, equivalently, V (n) is equal to
the number of occurrences of b in s(0..n], plus one.

If s[n] = b, then V (n) = dn/ϕ3e, or, equivalently, V (n) is equal to
the number of occurrences of aa in s(0..n], plus one.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

P.Bonardo, A.E.Frid Number of valid decompositions of Fibonacci prefixes



Proposition 2
(a) V ([r0]F ) ≥ V ([r ]F ) for all r ∈ {0, 1}∗.
(b) If r = r ′102k for some k ≥ 0, then V ([r0]F ) = V ([r ]F ).

Proposition 3
For all z ∈ {0, 1}∗ and all k ≥ 1, we have

V ([z102k ]F ) = V ([z102k−2]F ) + V ([z(01)k ]F )

Proposition 4
For all z ∈ {0, 1}∗ and all k ≥ 1, we have

V ([z10k1]F ) =
{

V ([z10k+1]F ), if k is odd;
V ([z10k ]F ) + V ([z(01)k/2]F ), if k is even.
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Corollary 1
For all k ≥ 1, we have V (F2k+2 − 2) = F2k

and V (F2k+1 − 1) = V (F2k+1 − 2) = F2k−1

Corollary 2
For all k ≥ 1, we have

V (F2k) = V (F2k+1) = F2k−2 + 1.
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Proposition 5
Let n = [z ]F and n′ = [z0]F be such that s[n] = a.

Then dn/ϕ2e = dn′/ϕ3e.
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on the graph. The two visible
straight lines correspond to the
symbols of the Fibonacci word
equal to a (the upper line) or b
(the lower line).
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Fibonacci-regular representation

Jeffrey Shallit added this part to show that the sequence (V (n)) is
Fibonacci-regular.

A sequence (s(n))n≥0 is said to be Fibonacci-regular if there exist
an integer k, a row vector v of dimension k, a column vector w of
dimension k, and a k × k matrix-valued morphism ρ such that for
z ∈ {0, 1}∗,

s([z ]F ) = vρ(z)w

The triple (v , ρ,w) is called a linear representation.
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For all x ∈ {0, 1}∗,

V (x01) = −V (x) + V (x0) + V (x00)
V (x10) = V (x1)

V (x0100) = −V (x) + 2V (x00) + V (x000)
V (x1000) = V (x100)

V (x010000) = −V (x)− V (x0) + 2V (x00) + 3V (x000) + V (x0000)
V (x00000) = V (x)− V (x0)− 3V (x00) + 3V (x000) + V (x0000)

We can demonstrate these relations thanks to the previous
propositions and they are used to proove that (V (n)) is
Fibonacci-regular.
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