Number of valid decompositions of Fibonacci prefixes

P.Bonardo, A.E.Frid

17th Mons theoretical computer science days

10 to 14 september 2018

Introduction

Fibonacci / Zeckendorf numeration system

A positive integer $n=F_{m_{k}}+F_{m_{k-1}}+\cdots+F_{m_{0}}$, where $m_{k}>m_{k-1}>\cdots>m_{0} \geq 2, \quad F_{0}=0, \quad F_{1}=1, \quad F_{2}=1$, and $F_{m+2}=F_{m+1}+F_{m} \quad$ for all $m \geq 0$.

If for all $i \geq 0, \quad m_{i+1}-m_{i} \geq 2$, we have a canonic representation of n which is unique.

Actually this system was invented by a dutch mathematician, Lekkerkerker, in 1952.

Example

$$
16=13+3=F_{7}+F_{4}=[100100]_{F}
$$

Legal representations

There are multiple representations for the same integer obtained by using

$$
\cdots 100 \cdots \longleftrightarrow \cdots 011 \cdots
$$

$$
\begin{aligned}
& \text { Example } \\
& 16=13+3=8+5+3=8+5+2+1=13+2+1 \\
& 16=[100100]_{F}=[11100]_{F}=[11011]_{F}=[100011]_{F}
\end{aligned}
$$

Valid representations

We allow more freedom to the previous system by using

$$
\cdots k 0 / \cdots \longleftrightarrow \cdots(k-1) 1(I+1) \cdots
$$

for all $k>0, I \geq 0$.

We go from $k F_{m+1}+I F_{m-1}$ to $(k-1) F_{m+1}+F_{m}+(I+1) F_{m-1}$.

Example

$16=[100100]_{F}=[11100]_{F}=[11011]_{F}=[100011]_{\digamma}$ are legal representations.
$16=[10121]_{F},[1221]_{F},[20000]_{F}$ are rerpresentations obtained by the previous transformation.

There are 7 valid representations of 16 . We note $V(16)=7$.

Figure: First 100 values of $V(n)$

Notations and some usual notions

- The lenght of a finite word u is denoted by $|u|$.
- u^{k} is the concatenation $\underbrace{u \cdots u}_{k}$.
- The i 'th symbol of a finite or infinite word u is denoted by $u[i]$, so that $u=u[1] u[2] \cdots$.
- A factor $u[i+1] u[i+2] \cdots u[j]$ of a finite or infinite word u is denoted by $u(i . . j]$.
- Then, for $j \geq 0$, the word $u(0 . . j]$ is the prefix of u of length j.
- We define Fibonacci words with the binary alphabet $\{a, b\}$ as follow: $s_{-1}=b, \quad s_{0}=a, \quad s_{n+1}=s_{n} s_{n-1} \quad$ for all $n \geq 0$.
- $s_{1}=a b, \quad s_{2}=a b a, \quad s_{3}=a b a a b, \quad s_{4}=a b a a b a b a$, and so on.
- The length of s_{n} is the Fibonacci number F_{n+2}.
- The infinite Fibonacci word is

$$
\mathbf{s}=\lim _{n \rightarrow \infty} s_{n}=\text { abaababaabaababaababa } \cdots
$$

- We note $\mathbf{s}[1]=a$.
- In the Fibonacci numeration system, a non-negative integer $N<F_{n+3}$ is represented as

$$
N=\sum_{0 \leq i \leq n} k_{i} F_{i+2}
$$

where $k_{i} \in\{0,1\}$ for $i \geq 0$.
This is the same system we studied but written differently.

- We have a unique representation of N if the following condition holds:

$$
\text { for } i \geq 1 \text {, if } k_{i}=1 \text {, then } k_{i-1}=0
$$

- $N=\sum_{0 \leq i \leq n} k_{i} F_{i+2}$ is represented by $N=\left[k_{n} \cdots k_{0}\right]_{F}$.

Lemma 1

For all k_{0}, \ldots, k_{n} such that $k_{i} \in\{0,1\}$, the word $s_{n}^{k_{n}} s_{n-1}^{k_{n-1}} \cdots s_{0}^{k_{0}}$ is a prefix of the Fibonacci word \mathbf{s}.

Then, a representation of $N=\left[k_{n} \cdots k_{0}\right]_{F}$ is valid if $k_{i} \geq 0$ for all i and $\mathbf{s}(0 . . N]=s_{n}^{k_{n}} s_{n-1}^{k_{n-1}} \cdots s_{0}^{k_{0}}$.

Example

$\mathbf{s}(0 . .14]=(a b a a b)(a b a)(a b a)(a b a)$ is a factorization of 14 .
Then, the representation $14=[1300]_{F}$ is valid.

The number of valid representations of an integer is exactly the number of factorizations of the corresponding prefix of the Fibonacci word.

Classic properties of the Fibonacci word

- The Fibonacci word $\mathbf{s}=$ abaababa... is the fixed point of the Fibonacci morphism

$$
\mu: a \rightarrow a b, b \rightarrow a
$$

- For each $n \geq 1$, we have $s_{n}=\mu\left(s_{n-1}\right)$.

Then Lemma 1 implies that

$$
\mu(\mathbf{s}(0 . . N])=\mathbf{s}\left(0 . .\left[k_{n} \cdots k_{0} 0\right]_{F}\right]
$$

- For all n, we have $\quad \mathbf{s}[n]= \begin{cases}a, & \text { if }\left\{n / \varphi^{2}\right\}<1-1 / \varphi^{2} ; \\ b, & \text { otherwise } .\end{cases}$

Where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio and $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x.

Results

Proposition 1

If $\mathbf{s}[n]=a$, all valid representations of n end with an even number of $0 \mathbf{s}$. If $\mathbf{s}[n]=b$, all of them end with an odd number of 0 s .

Theorem 1

If $\mathbf{s}[n]=a$, then $V(n)=\left\lceil n / \varphi^{2}\right\rceil$,or, equivalently, $V(n)$ is equal to the number of occurrences of b in $\mathbf{s}(0 . . n]$, plus one.
If $\mathbf{s}[n]=b$, then $V(n)=\left\lceil n / \varphi^{3}\right\rceil$, or, equivalently, $V(n)$ is equal to the number of occurrences of aa in $\mathbf{s}(0 . . n]$, plus one.

Proposition 2

(a) $V\left([r 0]_{F}\right) \geq V\left([r]_{F}\right)$ for all $r \in\{0,1\}^{*}$.
(b) If $r=r^{\prime} 10^{2 k}$ for some $k \geq 0$, then $V\left([r 0]_{F}\right)=V\left([r]_{F}\right)$.

Proposition 3

For all $z \in\{0,1\}^{*}$ and all $k \geq 1$, we have

$$
V\left(\left[z 10^{2 k}\right]_{F}\right)=V\left(\left[z 10^{2 k-2}\right]_{F}\right)+V\left(\left[z(01)^{k}\right]_{F}\right)
$$

Proposition 4

For all $z \in\{0,1\}^{*}$ and all $k \geq 1$, we have

$$
V\left(\left[z 10^{k} 1\right]_{F}\right)= \begin{cases}V\left(\left[z 10^{k+1}\right]_{F}\right), & \text { if } k \text { is odd; } \\ V\left(\left[z 10^{k}\right]_{F}\right)+V\left(\left[z(01)^{k / 2}\right]_{F}\right), & \text { if } k \text { is even } .\end{cases}
$$

Corollary 1
For all $k \geq 1$, we have $\quad V\left(F_{2 k+2}-2\right)=F_{2 k}$

$$
\text { and } \quad V\left(F_{2 k+1}-1\right)=V\left(F_{2 k+1}-2\right)=F_{2 k-1}
$$

Corollary 2

For all $k \geq 1$, we have

$$
V\left(F_{2 k}\right)=V\left(F_{2 k+1}\right)=F_{2 k-2}+1
$$

Proposition 5

Let $n=[z]_{F}$ and $n^{\prime}=[z 0]_{F}$ be such that $\mathbf{s}[n]=a$.
Then $\left\lceil n / \varphi^{2}\right\rceil=\left\lceil n^{\prime} / \varphi^{3}\right\rceil$.

The theorem ensures that the sequence $(V(n))$ grows as shown on the graph. The two visible straight lines correspond to the symbols of the Fibonacci word equal to a (the upper line) or b (the lower line).

Fibonacci-regular representation

Jeffrey Shallit added this part to show that the sequence $(V(n))$ is Fibonacci-regular.

A sequence $(s(n))_{n \geq 0}$ is said to be Fibonacci-regular if there exist an integer k, a row vector v of dimension k, a column vector w of dimension k, and a $k \times k$ matrix-valued morphism ρ such that for $z \in\{0,1\}^{*}$,

$$
s\left([z]_{F}\right)=v \rho(z) w
$$

The triple (v, ρ, w) is called a linear representation.

For all $x \in\{0,1\}^{*}$,

$$
\begin{aligned}
V(x 01) & =-V(x)+V(x 0)+V(x 00) \\
V(x 10) & =V(x 1) \\
V(x 0100) & =-V(x)+2 V(x 00)+V(x 000) \\
V(x 1000) & =V(x 100) \\
V(x 010000) & =-V(x)-V(x 0)+2 V(x 00)+3 V(x 000)+V(x 0000) \\
V(x 00000) & =V(x)-V(x 0)-3 V(x 00)+3 V(x 000)+V(x 0000)
\end{aligned}
$$

We can demonstrate these relations thanks to the previous propositions and they are used to proove that $(V(n))$ is Fibonacci-regular.

