Number of valid decompositions of Fibonacci prefixes

P.Bonardo, A.E.Frid

17th Mons theoretical computer science days

10 to 14 september 2018

Introduction Fibonacci / Zeckendorf numeration system

A positive integer $n = F_{m_k} + F_{m_{k-1}} + \cdots + F_{m_0}$, where

 $m_k > m_{k-1} > \cdots > m_0 \ge 2$, $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, and $F_{m+2} = F_{m+1} + F_m$ for all $m \ge 0$.

If for all $i \ge 0$, $m_{i+1} - m_i \ge 2$, we have a canonic representation of n which is unique.

Actually this system was invented by a dutch mathematician, Lekkerkerker, in 1952.

Example

$$16 = 13 + 3 = F_7 + F_4 = [100100]_F$$

イロト イポト イラト イラト 一戸

Legal representations

There are multiple representations for the same integer obtained by using

$$\cdots 100 \cdots \longleftrightarrow \cdots 011 \cdots$$

Example

$$16 = 13 + 3 = 8 + 5 + 3 = 8 + 5 + 2 + 1 = 13 + 2 + 1$$

$$16 = [100100]_F = [11100]_F = [11011]_F = [100011]_F$$

Valid representations

We allow more freedom to the previous system by using

$$\cdots k0 / \cdots \longleftrightarrow \cdots (k-1) 1(l+1) \cdots$$

for all k > 0, $l \ge 0$.

We go from $kF_{m+1} + IF_{m-1}$ to $(k-1)F_{m+1} + F_m + (l+1)F_{m-1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Example

 $16 = [100100]_F = [11100]_F = [11011]_F = [100011]_F$ are legal representations.

 $16 = [10121]_F, [1221]_F, [20000]_F$ are representations obtained by the previous transformation.

There are 7 valid representations of 16. We note V(16) = 7.

Figure: First 100 values of V(n)

Notations and some usual notions

- The lenght of a finite word u is denoted by |u|.
- u^k is the concatenation $\underbrace{u\cdots u}_{}$.
- The *i*'th symbol of a finite or infinite word *u* is denoted by u[i], so that $u = u[1]u[2] \cdots$.
- A factor u[i + 1]u[i + 2] · · · u[j] of a finite or infinite word u is denoted by u(i..j].
- Then, for $j \ge 0$, the word u(0..j] is the prefix of u of length j.

The Fibonacci sequence

- We define Fibonacci words with the binary alphabet $\{a, b\}$ as follow: $s_{-1} = b$, $s_0 = a$, $s_{n+1} = s_n s_{n-1}$ for all $n \ge 0$.
- $s_1 = ab$, $s_2 = aba$, $s_3 = abaab$, $s_4 = abaababa$, and so on.
- The length of s_n is the Fibonacci number F_{n+2} .
- The infinite Fibonacci word is

• We note **s**[1] = *a*.

3

 In the Fibonacci numeration system, a non-negative integer N < F_{n+3} is represented as

$$N = \sum_{0 \le i \le n} k_i F_{i+2}$$

where $k_i \in \{0, 1\}$ for $i \ge 0$.

This is the same system we studied but written differently.

• We have a unique representation of *N* if the following condition holds:

for
$$i \geq 1$$
, if $k_i = 1$, then $k_{i-1} = 0$

•
$$N = \sum_{0 \le i \le n} k_i F_{i+2}$$
 is represented by $N = [k_n \cdots k_0]_F$.

- 3 b - 4 3 b

Lemma 1

For all k_0, \ldots, k_n such that $k_i \in \{0, 1\}$, the word $s_n^{k_n} s_{n-1}^{k_{n-1}} \cdots s_0^{k_0}$ is a prefix of the Fibonacci word **s**.

Then, a representation of $N = [k_n \cdots k_0]_F$ is valid if $k_i \ge 0$ for all i and $\mathbf{s}(0..N] = s_n^{k_n} s_{n-1}^{k_{n-1}} \cdots s_0^{k_0}$.

Example

s(0..14] = (abaab)(aba)(aba)(aba) is a factorization of 14. Then, the representation $14 = [1300]_F$ is valid.

The number of valid representations of an integer is exactly the number of factorizations of the corresponding prefix of the Fibonacci word.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Classic properties of the Fibonacci word

The Fibonacci word s = abaababa...
 is the fixed point of the Fibonacci morphism

$$\mu: a
ightarrow ab, b
ightarrow a$$

• For each $n \ge 1$, we have $s_n = \mu(s_{n-1})$. Then Lemma 1 implies that

$$\mu(\mathbf{s}(0..N]) = \mathbf{s}(0..[k_n \cdots k_0 0]_F]$$

• For all *n*, we have
$$\mathbf{s}[n] = \begin{cases} a, & \text{if } \{n/\varphi^2\} < 1 - 1/\varphi^2; \\ b, & \text{otherwise.} \end{cases}$$

Where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden ratio and $\{x\} = x - \lfloor x \rfloor$ is the fractional part of x.

Proposition 1

If $\mathbf{s}[n] = a$, all valid representations of n end with an even number of 0s. If $\mathbf{s}[n] = b$, all of them end with an odd number of 0s.

Theorem 1

If $\mathbf{s}[n] = a$, then $V(n) = \lceil n/\varphi^2 \rceil$, or, equivalently, V(n) is equal to the number of occurrences of b in $\mathbf{s}(0..n]$, plus one.

If $\mathbf{s}[n] = b$, then $V(n) = \lceil n/\varphi^3 \rceil$, or, equivalently, V(n) is equal to the number of occurrences of *aa* in $\mathbf{s}(0..n]$, plus one.

Proposition 2

Proposition 3

For all $z \in \{0,1\}^*$ and all $k \ge 1$, we have

$$V([z10^{2k}]_F) = V([z10^{2k-2}]_F) + V([z(01)^k]_F)$$

Proposition 4

For all $z \in \{0,1\}^*$ and all $k \ge 1$, we have

$$V([z10^{k}1]_{F}) = \begin{cases} V([z10^{k+1}]_{F}), & \text{if } k \text{ is odd}; \\ V([z10^{k}]_{F}) + V([z(01)^{k/2}]_{F}), & \text{if } k \text{ is even}. \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

3

Corollary 1

For all
$$k \ge 1$$
, we have $V(F_{2k+2} - 2) = F_{2k}$

and
$$V(F_{2k+1}-1) = V(F_{2k+1}-2) = F_{2k-1}$$

Corollary 2

For all $k \ge 1$, we have

$$V(F_{2k}) = V(F_{2k+1}) = F_{2k-2} + 1.$$

Proposition 5

Let
$$n = [z]_F$$
 and $n' = [z_0]_F$ be such that $\mathbf{s}[n] = a$.

Then $\lceil n/\varphi^2 \rceil = \lceil n'/\varphi^3 \rceil$.

The theorem ensures that the sequence (V(n)) grows as shown on the graph. The two visible straight lines correspond to the symbols of the Fibonacci word equal to *a* (the upper line) or *b* (the lower line).

Fibonacci-regular representation

Jeffrey Shallit added this part to show that the sequence (V(n)) is Fibonacci-regular.

A sequence $(s(n))_{n\geq 0}$ is said to be *Fibonacci-regular* if there exist an integer k, a row vector v of dimension k, a column vector w of dimension k, and a $k \times k$ matrix-valued morphism ρ such that for $z \in \{0, 1\}^*$,

$$s([z]_F) = v\rho(z)w$$

The triple (v, ρ, w) is called a *linear representation*.

For all $x \in \{0, 1\}^*$,

$$V(x01) = -V(x) + V(x0) + V(x00)$$

$$V(x10) = V(x1)$$

$$V(x0100) = -V(x) + 2V(x00) + V(x000)$$

$$V(x1000) = V(x100)$$

$$V(x010000) = -V(x) - V(x0) + 2V(x00) + 3V(x000) + V(x0000)$$

$$V(x00000) = V(x) - V(x0) - 3V(x00) + 3V(x000) + V(x0000)$$

We can demonstrate these relations thanks to the previous propositions and they are used to proove that (V(n)) is Fibonacci-regular.