An automaton to study imbalances in S-adic words Application : construction of a C-adic word with infinite imbalance

Mélodie Andrieu Advisor : Julien Cassaigne Institut de Mathématiques de Marseille

17^e Journées Montoises, Bordeaux, 2018

 ${\sf I}$ - ${\sf INITIAL}$ QUESTION : imbalance of words associated with Cassaigne-Selmer continued fraction algorithm

II - GENERAL TOOL : an automaton to study imbalance in S-adic words

III - RESULT : construction of a C-adic word with infinite imbalance

Motiv	ations
000	

1D : Euclid's algorithm

Dynamical system	$ \begin{array}{cccc} \mathbb{R}^2_+ & \longrightarrow & \mathbb{R}^2_+ \\ (x,y) & \longmapsto & (x-y,y) \text{ if } x \geq y \\ & & (x,y-x) \text{ otherwise.} \end{array} $			
Associated words	sturmian words			
Substitutions set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$2 \mapsto 21 \qquad 2 \mapsto 2$			
(Im)balance	1-balanced			
Rotation coding	\checkmark			

Motiv	ations
000	

2D : Arnoux-Rauzy algorithm

Dynamical system	$ \begin{array}{cccc} \mathcal{G} \subseteq \mathbb{R}^3_+ & \longrightarrow & \mathcal{G} \\ (x,y,z) & \longmapsto & (x-y-z,y,z) \text{ if } x \ge y+z \\ & & (x,y-x-z,z) \text{ if } y \ge x+z \\ & & (x,y,z-x-y) \text{ if } z \ge x+y. \end{array} $				
Associated words	Arnoux-Rauzy words				
Substitutions sot	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Substitutions set	$\begin{vmatrix} 2 & \mapsto & 21 \\ 3 & \mapsto & 31 \\ \end{vmatrix} $				
(Im)balance	There exist AR words with infinite imbalance.				
Rotation coding	X				

The Rauzy gasket \mathcal{G} .

A new candidate for 2D : Cassaigne-Selmer algorithm

Dynamical system	\mathbb{R}^3_+ (x,	y, z)) ⊢	\rightarrow	\mathbb{R}^3_+ $(x-z)$ (y, x, z)	z, z, y) z – x)	if x oth	$x \ge z$ ierwis	e.	
Associated words	C-adic words									
	<i>c</i> ₁ :	1	\mapsto	1		<i>c</i> ₂ :	1	\mapsto	2	
Substitutions set		2	\mapsto	13			2	\mapsto	13	
		3	\mapsto	2			3	\mapsto	3	
(Im)balance					?					
Rotation coding					?					

$C := \{c_1, c_2\}.$

What can be said about the imbalance of C-adic words?

A new candidate for 2D : Cassaigne-Selmer algorithm

Dynamical system	$ \begin{array}{cccc} \mathbb{R}^3_+ & \longrightarrow & \mathbb{R}^3_+ \\ (x,y,z) & \longmapsto & (x-z,z,y) \text{ if } x \geq z \\ & (y,x,z-x) \text{ otherwise.} \end{array} $				
Associated words	C-adic words				
	$c_1: 1 \mapsto 1 c_2: 1 \mapsto 2$				
Substitutions set	$2 \mapsto 13$ $2 \mapsto 13$				
	$3 \mapsto 2 \qquad 3 \mapsto 3$				
(Im)balance	There exists C-adic words with infinite imbalance.				
Rotation coding	?				

$C := \{c_1, c_2\}.$

What can be said about the imbalance of C-adic words?

Tool : Imbalances automaton ●○○○○ Results for C-adic words

Definitions, general problem

Be S a finite set of non-erasing word morphisms over an alphabet \mathcal{A} .

Definitions

• $w \in \mathcal{A}^{\mathbb{N}}$ is a S-adic word if there exist : - a seed $a \in \mathcal{A}$ - a directive sequence $(\sigma_k) \in S^{\mathbb{N}}$ s.t. $w = \lim_{n \to \infty} \sigma_0 \circ \dots \circ \sigma_{n-1}(a)$. • $u, v \in \mathcal{A}^*$. The abelianized of u is $ab(u) := (|u|_I)_{I \in \mathcal{A}} \in \mathbb{N}^{\mathcal{A}}$. We have $: -ab(u).(1)_{I \in \mathcal{A}} = |u|$ $-[ab(u) - ab(v)].(1)_{I \in \mathcal{A}} = 0 \iff |u| = |v|$. In that case, ab(u) - ab(v) is called the imbalance vector of u and v. If $w \in \mathcal{A}^{\mathbb{N}}$, the imbalance of w is : $D(w) := \sup_{u,v \in F(w), |u| = |v|} ||ab(u) - ab(v)||_{\infty} \in \mathbb{N} \cup \{\infty\}$.

General problem : is the imbalance of S-adic words finite ? bounded ?

 $\mathsf{E}\mathsf{x}$: Standard sturmians : yes and yes ; standard Arnoux-Rauzy : no and no.

$$\mathsf{Idea}:\mathsf{introduce}\;\mathcal{F}:=\bigcup_{w\;\mathsf{S-adic}}\{\mathsf{ab}(u)-\mathsf{ab}(v)/u,v\in\mathsf{F}(w)\mathsf{and}|u|=|v|\}\subseteq\mathbb{Z}^{\mathcal{A}}.$$

Lemma : The imbalance of S-adic words is bounded if and only if \mathcal{F} is finite. \longrightarrow We want to explore \mathcal{F} .

Tool : Imbalances automaton

Results for C-adic words

We need a bigger set \mathcal{S}

Where does an imbalance vector come from? Let's desubstitute!

$$\begin{array}{rcl} x \in \mathcal{F} & \Rightarrow & \exists w \text{ S-adic, } u, v \in F(w) \text{ s.t. } ab(u) - ab(v) = x \\ \Rightarrow & \exists (\sigma_k) \in S^{\mathbb{N}}, a \in \mathcal{A} \quad [\text{s.t. } w = \lim \sigma_0 \circ \ldots \circ \sigma_{n-1}(a)] \\ & \exists n_0 \in \mathbb{N}, \exists u, v \mathcal{A}^* \quad \text{s.t. } u, v \in F(\sigma_0 \circ \ldots \circ \sigma_{n_0-1}(a)) \text{ and } ab(u) - ab(v) = x. \\ \Rightarrow & \exists n_0 \in \mathbb{N}, \exists (\sigma_k) \in S^{n_0}, \exists a \in \mathcal{A}, \\ & \exists u, v \in F(\sigma_0 \circ \ldots \circ \sigma_{n_0-1}(a)) \quad \text{s.t. } ab(u) - ab(v) = x \end{array}$$

Where does they come?

$$\begin{array}{rcl} \sigma_{1}\circ\ldots\circ\sigma_{n_{0}-1}(a) & = & l_{0}......l_{i}.....l_{j}.....l_{k}\\ \sigma_{0}\circ\sigma_{1}\circ\ldots\circ\sigma_{n-1}(a) & = & \sigma_{0}(l_{0}).....\sigma_{0}(l_{j}).....\sigma_{0}(l_{j})\\ & & \mathbf{u} \end{array}$$

Problem : \tilde{u} and \tilde{v} may not have the same length ! Solution : we have to consider a bigger set :

$$\mathcal{S} := \bigcup_{w \text{ S-adic}} \{ab(u) - ab(v)/u, v \in F(w)\} \subseteq \mathbb{Z}^{\mathcal{A}}.$$

On this bigger set, we are going to study the converse of the desubstitution which is NOT the substitution ...but the 'substitute and cut' operation.

Results for C-adic words

The substitute and cut operation on couples of factors

Def : Be $u, \tilde{u}, v, \tilde{v} \in A^*$. Denote by $\alpha(u)$ and $\omega(u)$ the first and last letter of u; and by $p_k(u)$ [$s_k(u)$] the prefix [suffix] of u of length k.

• A substitute and cut operation from \tilde{u} to u is a triplet $(\sigma, \beta, \gamma) \in S \times \mathbb{N}^2$ s.t. :

•
$$p_{\beta}(\sigma(\widetilde{u})).u.s_{\gamma}(\sigma(\widetilde{u})) = \sigma(\widetilde{u})$$

• Cutting conditions :
$$\begin{cases} \beta = \gamma = 0 \text{ if } \widetilde{u} = \epsilon \text{ (empty word)} \\ \beta + \gamma \leq |\sigma(\widetilde{u})| \text{ and } \beta, \gamma < |\sigma(\widetilde{u})| \text{ if } |u| = 1 \\ \beta < |\sigma(\alpha(\widetilde{u}))| \text{ and } \gamma < |\sigma(\omega(\widetilde{u}))| \text{ otherwise.} \end{cases}$$

A substitute and cut operation from (*ũ*, *ṽ*) to (*u*, *v*) is (σ, β, γ, δ, η) ∈ S × N⁴
 s.t.:

-
$$(\sigma, \beta, \gamma)$$
 is a S&C operation from \tilde{u} to u
- (σ, δ, η) is a S&C operation from \tilde{v} to v .

We denote it ${}^{\beta}_{\delta}\sigma^{\gamma}_{n}$.

• A quintuplet $(\sigma, \beta, \gamma, \delta, \eta)$ which satisfy (\approx) is said to be allowed.

$$\mathsf{Ex}: S = \mathbf{C} = \left\{ \begin{array}{cccc} \mathfrak{c1}: & 1 & \mapsto & 1 \\ & 2 & \mapsto & 13 \\ & 3 & \mapsto & 2 \end{array} \right. \qquad \begin{array}{cccc} \mathfrak{c2}: & 1 & \mapsto & 2 \\ & 2 & \mapsto & 13 \\ & 3 & \mapsto & 3 \end{array} \right\} \quad u = 23 \ v = 33$$

There are 4 allowed S&C operations from (u,v): ${}_{0}^{0}c1_{0}^{0}$, ${}_{1}^{1}c1_{0}^{0}$, ${}_{0}^{0}c2_{0}^{0}$ and ${}_{0}^{1}c2_{0}^{0}$, which give respectively (132, 22), (32, 22), (133, 33) and (33, 33).

Motivations	Tool : Imbalances automaton	Results for C-adic words
000	00000	00000
A substitute and cut oper	ration on \mathcal{S} ?	

 \longrightarrow We want the S&C operations to be the transitions of our automaton...

Problem : $x \in S$ can represent in the same time (u, v) and (u', v') for which the sets of allowed S&C operations (and the result they give) are different !

Ex : x = (0, 0, 0) represents u = v = 132 as well as $u' = v' = \epsilon$. ${}_{0}^{0}c1_{0}^{1}$ is allowed for (u, v) but not for (u', v').

Solution : to burst the vectors of S by adding a 'matrix of extremities' containing the first/last letters of (u, v) - and instead of S, work on :

$$\mathcal{S}' := \bigcup_{w \text{ S-adic}} \left\{ \left(M_{\text{ext}}(u, v), ab(u) - ab(v) \right), u, v \in F(w) \right\}$$

$$\begin{aligned} \mathsf{Ex} &: \begin{pmatrix} a & b \\ c & c \end{pmatrix}, (1, 1, -1) \text{ represents } (acb, cc), \dots \\ & \begin{pmatrix} a & \cdot \\ c & c \end{pmatrix}, (1, 0, -2) \text{ represents } (a, cc). \\ & \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}, (0, 0, 0) \text{ represents } (\epsilon, \epsilon). \end{aligned}$$

Theorem : The S&C operation is well defined on S'.

Tool : Imbalances automaton ○○○○● Results for C-adic words

The imbalances automaton for S-adic words

We consider the automaton s.t. :

- states : \mathcal{S}'
- final states : $\mathcal{F}' = \{(M, x) \in \mathcal{S}' \text{ s.t. } x.(1)_{I \in \mathcal{A}} = 0\}$
- transitions : $X \stackrel{\beta \ \sigma \gamma}{\longrightarrow} Y$ whenever ${}^{\beta}_{\delta} \sigma^{\gamma}_{\eta}$ is a S&C operation from X to Y.

Can we construct it ? Does there exist a finite set $\mathcal{I} \subseteq \mathcal{S}'$ s.t. from \mathcal{I} you can reach each elements of \mathcal{S}' ?

Theorem : If $\forall a \in \mathcal{A}$ there exists a S-adic word w s.t. $a \in F(w)$, then there exists a finite set $\mathcal{I} \in \mathcal{S}'$ s.t. : $\forall X \in \mathcal{S}', \exists X_0 \in \mathcal{I}, \exists (T_i)_{i \in \{0, n_0-1\}} = ({}^{\beta i}_{\delta i} \sigma i^{\gamma i}_{\eta i})_{i \in \{0, n_0-1\}}$ a finite sequence of allowed substitute and cut operations s.t. :

$$X = T_{n_0-1} \circ \ldots \circ T_0(X_0).$$

We can take
$$\mathcal{I} = \left\{ \begin{pmatrix} a & \cdot \\ a & \cdot \end{pmatrix}, a \in \mathcal{A}
ight\}.$$

12/16

Tool : Imbalances automaton

Results for C-adic words

Experimentation (sad) reality

Problem : the tree grows too fast !

Number of vertices in function of depth

Solution : cut branches with no hope to reach new final states...

At depth 9, among 1 000 vertices, we found the first imbalance 3... At depth 16, among 80 000 vertices, we found the first imbalance 4...

Results for C-adic words

Be w_0 any C-adic word, e.g. $c_1 \circ c_2 \circ c_1 \circ c_2 \circ ...(1)$. Consider $w_1 = c_2 \circ c_2 \circ c_2(w_0)$ and for each $n \ge 1$:

$$\begin{cases} w_{n+1} = c_1^{2n+2} \circ c_2(w_n) & \text{if } n \text{ is odd} \\ w_{n+1} = c_2^{2n+2} \circ c_1(w_n) & \text{otherwise.} \end{cases}$$

Theorem 1 : For every n, w_n is a C-adic word satisfying $D(w_n) \ge n$. \longrightarrow The imbalance of C-adic words is not bounded.

Theorem 2 : There exists a C-adic word with infinite imbalance.

This is a construction from $(w_n)_n$ using the following lemma :

Lemma : If w is a C-adic word s.t. $D(w) \ge 3n$, then $c_1(w)$ (resp. $c_2(w)$) is a C-adic word satisfying $D(w) \ge n$.

Tool : Imbalances automaton

Results for C-adic words

Moral & remaining questions

• The imbalance automaton gives intuitions on the nature (bounded/ unbounded) of the set of imbalances of S-adic words - and on rules to construct these imbalances.

• Difficulties :

- the choice of an initial set $\ensuremath{\mathcal{I}}$

- the growing speed.

Miscellaneous questions :

- measure of C-adic words with infinite imbalance?

- what can be said for imbalances of C-adic words whose the number of consecutive occurencies of a same substitution in the directive sequence is bounded ?

- Rotation coding?

- Does there exist ${\sf S}$ such that imbalances of S-adic word are finite but not bounded ?

- Choice of an initial set ${\mathcal I}$ when the condition of the theorem is not satisfied ?

Tool : Imbalances automaton

Results for C-adic words ○○○○●

Thank you!