An automaton to study imbalances in S-adic words

 Application : construction of a C-adic word with infinite imbalanceMélodie Andrieu
Advisor: Julien Cassaigne
Institut de Mathématiques de Marseille

17^{e} Journées Montoises, Bordeaux, 2018

I - INITIAL QUESTION : imbalance of words associated with Cassaigne-Selmer continued fraction algorithm

II - GENERAL TOOL : an automaton to study imbalance in S-adic words

III - RESULT : construction of a C-adic word with infinite imbalance

1D : Euclid's algorithm

2D : Arnoux-Rauzy algorithm

Dynamical system	$\begin{aligned} & \mathcal{G} \subseteq \mathbb{R}_{+}^{3} \\ & (x, y, z \end{aligned}$				$\begin{aligned} \longrightarrow & \mathcal{G} \\ \longmapsto & (x-y-z, y, z) \text { if } x \geq y+z \\ & (x, y-x-z, z) \text { if } y \geq x+z \\ & (x, y, z-x-y) \text { if } z \geq x+y . \end{aligned}$							
Associated words	Arnoux-Rauzy words											
	σ_{1} :	1	\rightarrow	1	σ_{2}	1	\mapsto	12	σ_{3} :	1	\mapsto	13
Substitutions set		2	\mapsto	21			\mapsto	2		2	\mapsto	23
		3	\mapsto	31			\mapsto	32		3	\mapsto	3
(Im)balance	There exist AR words with infinite imbalance.											
Rotation coding	X											

The Rauzy gasket \mathcal{G}.

A new candidate for 2D: Cassaigne-Selmer algorithm

Dynamical system	$\begin{aligned} & \mathbb{R}_{+}^{3} \\ & (x, y, z) \end{aligned}$		$\begin{aligned} \longrightarrow & \mathbb{R}_{+}^{3} \\ \longrightarrow & (x-z, z, y) \text { if } x \geq z \\ & (y, x, z-x) \text { otherwise. } \end{aligned}$				
Associated words	C-adic words						
Substitutions set	$c_{1}: 1$	\mapsto	1	c_{2} :	1	\mapsto	2
	2	\mapsto	13		2	\mapsto	13
	3	\mapsto	2		3	\mapsto	3
(Im)balance	?						
Rotation coding	?						

$C:=\left\{c_{1}, c_{2}\right\}$.
What can be said about the imbalance of C -adic words?

A new candidate for 2D: Cassaigne-Selmer algorithm

$C:=\left\{c_{1}, c_{2}\right\}$.
What can be said about the imbalance of C -adic words?

Definitions, general problem

Be S a finite set of non-erasing word morphisms over an alphabet \mathcal{A}.
Definitions

- $w \in \mathcal{A}^{\mathbb{N}}$ is a S -adic word if there exist :
- a seed $a \in A$
- a directive sequence $\left(\sigma_{k}\right) \in S^{\mathbb{N}} \quad$ s.t. $\quad w=\lim _{n \rightarrow \infty} \sigma_{0} \circ \ldots \circ \sigma_{n-1}(a)$.
- $u, v \in \mathcal{A}^{*}$. The abelianized of u is $a b(u):=\left(|u|_{\iota}\right)_{l \in \mathcal{A}} \in \mathbb{N}^{\mathcal{A}}$.

We have : $-a b(u) \cdot(1)_{I \in \mathcal{A}}=|u|$

$$
-[a b(u)-a b(v)] \cdot(1)_{I \in \mathcal{A}}=0 \Longleftrightarrow|u|=|v| .
$$

In that case, $a b(u)-a b(v)$ is called the imbalance vector of u and v.
If $w \in \mathcal{A}^{\mathbb{N}}$, the imbalance of w is :

$$
D(w):=\sup _{u, v \in F(w),|u|=|v|}\|a b(u)-a b(v)\|_{\infty} \in \mathbb{N} \cup\{\infty\}
$$

General problem : is the imbalance of S -adic words finite? bounded?
Ex: Standard sturmians : yes and yes; standard Arnoux-Rauzy : no and no.
Idea : introduce $\mathcal{F}:=\bigcup_{w \text { S-adic }}\{a b(u)-a b(v) / u, v \in F(w) a n d|u|=|v|\} \subseteq \mathbb{Z}^{\mathcal{A}}$.
Lemma : The imbalance of S -adic words is bounded if and only if \mathcal{F} is finite.
\longrightarrow We want to explore \mathcal{F}.

We need a bigger set \mathcal{S}

Where does an imbalance vector come from ? Let's desubstitute!

$$
\begin{aligned}
x \in \mathcal{F} \Rightarrow & \exists w \text { S-adic, } u, v \in F(w) \text { s.t. } a b(u)-a b(v)=x \\
\Rightarrow & \exists\left(\sigma_{k}\right) \in S^{\mathbb{N}}, a \in \mathcal{A} \quad\left[\text { s.t. } w=\lim \sigma_{0} \circ \ldots \circ \sigma_{n-1}(a)\right] \\
& \exists n_{0} \in \mathbb{N}, \exists u, v \mathcal{A}^{*} \text { s.t. } u, v \in F\left(\sigma_{0} \circ \ldots \circ \sigma_{n_{0}-1}(a)\right) \text { and } a b(u)-a b(v)=x . \\
\Rightarrow & \exists n_{0} \in \mathbb{N}, \exists\left(\sigma_{k}\right) \in S^{n_{0}}, \exists a \in \mathcal{A}, \\
& \exists u, v \in F\left(\sigma_{0} \circ \ldots \circ \sigma_{n_{0}-1}(a)\right) \quad \text { s.t. } \quad a b(u)-a b(v)=x
\end{aligned}
$$

Where does they come?

$$
\begin{aligned}
& \sigma_{1} \circ \ldots \circ \sigma_{n_{0-1}(1)}(a)=l_{0} \ldots \ldots \ldots \ldots \ldots c_{i} \ldots \ldots \ldots \ldots l_{j} \ldots \ldots \ldots . l_{k} \\
& \sigma_{0} \circ \sigma_{1} \circ \ldots \circ \sigma_{n-1}(a)=\sigma_{0}\left(l_{0}\right) \ldots . \ldots \sigma_{0}\left(l_{i}\right) \ldots . . . \sigma_{0}\left(l_{j}\right) \ldots \ldots \sigma_{0}\left(l_{k}\right) \\
& u
\end{aligned}
$$

Problem : \tilde{u} and \tilde{v} may not have the same length !
Solution : we have to consider a bigger set :

$$
\mathcal{S}:=\bigcup_{w \text { S-adic }}\{a b(u)-a b(v) / u, v \in F(w)\} \subseteq \mathbb{Z}^{\mathcal{A}} .
$$

On this bigger set, we are going to study the converse of the desubstitution which is NOT the substitution
...but the 'substitute and cut' operation.

The substitute and cut operation on couples of factors

Def: Be $u, \tilde{u}, v, \tilde{v} \in \mathcal{A}^{*}$. Denote by $\alpha(u)$ and $\omega(u)$ the first and last letter of u; and by $p_{k}(u)\left[s_{k}(u)\right]$ the prefix [suffix] of u of length k.

- A substitute and cut operation from \tilde{u} to u is a triplet $(\sigma, \beta, \gamma) \in S \times \mathbb{N}^{2}$ s.t. :
- $p_{\beta}(\sigma(\widetilde{u}))$.u. $s_{\gamma}(\sigma(\widetilde{u}))=\sigma(\widetilde{u})$
- Cutting conditions: $\left\{\begin{array}{l}\beta=\gamma=0 \text { if } \tilde{u}=\epsilon \text { (empty word) } \\ \beta+\gamma \leq|\sigma(\widetilde{u})| \text { and } \beta, \gamma<|\sigma(\widetilde{u})| \text { if }|u|=1 \\ \beta<|\sigma(\alpha(\widetilde{u}))| \text { and } \gamma<|\sigma(\omega(\widetilde{u}))| \text { otherwise. }\end{array}\right.$
- A substitute and cut operation from (\tilde{u}, \tilde{v}) to (u, v) is $(\sigma, \beta, \gamma, \delta, \eta) \in S \times \mathbb{N}^{4}$ s.t. :
- (σ, β, γ) is a S\&C operation from \tilde{u} to u
- (σ, δ, η) is a $\mathrm{S} \& \mathrm{C}$ operation from \tilde{v} to v.

We denote it ${ }_{\delta}^{\beta} \sigma_{\eta}^{\gamma}$.

- A quintuplet $(\sigma, \beta, \gamma, \delta, \eta)$ which satisfy (\lessdot) is said to be allowed.

There are 4 allowed S\&C operations from (u, v) : ${ }_{0}^{0} c 1_{0}^{0},{ }_{0}^{1} c 1_{0}^{0},{ }_{0}^{0} c 2_{0}^{0}$ and ${ }_{0}^{1} c 2_{0}^{0}$, which give respectively $(132,22),(32,22),(133,33)$ and $(33,33)$.

A substitute and cut operation on \mathcal{S} ?

\longrightarrow We want the S\&C operations to be the transitions of our automaton...
Problem : $x \in \mathcal{S}$ can represent in the same time (u, v) and ($\left.u^{\prime}, v^{\prime}\right)$ for which the sets of allowed S\&C operations (and the result they give) are different!

Ex: $x=(0,0,0)$ represents $u=v=132$ as well as $u^{\prime}=v^{\prime}=\epsilon$.
${ }_{0}^{0} c 1_{0}^{1}$ is allowed for (u, v) but not for (u^{\prime}, v^{\prime}).
Solution : to burst the vectors of \mathcal{S} by adding a 'matrix of extremities' containing the first/last letters of (u, v) - and instead of \mathcal{S}, work on :

$$
\mathcal{S}^{\prime}:=\bigcup_{w \text { S-adic }}\left\{\left(M_{e x t}(u, v), a b(u)-a b(v)\right), u, v \in F(w)\right\} .
$$

Ex: $\left(\begin{array}{ll}a & b \\ c & c\end{array}\right),(1,1,-1)$ represents $(a c b, c c), \ldots$
$\left(\begin{array}{ll}a & \dot{c} \\ c & c\end{array}\right),(1,0,-2)$ represents $(a, c c)$.
$\left(\begin{array}{ll}. & \cdot \\ . & .\end{array}\right),(0,0,0)$ represents (ϵ, ϵ).
Theorem : The S\&C operation is well defined on \mathcal{S}^{\prime}.

The imbalances automaton for S -adic words

We consider the automaton s.t. :

- states : \mathcal{S}^{\prime}
- final states : $\mathcal{F}^{\prime}=\left\{(M, x) \in \mathcal{S}^{\prime}\right.$ s.t. $\left.x .(1)_{\mid \in \mathcal{A}}=0\right\}$
- transitions : $\mathrm{X} \xrightarrow{{ }_{\delta}^{\beta} \sigma_{\eta}^{\gamma}} \mathrm{Y}$ whenever ${ }_{\delta}^{\beta} \sigma_{\eta}^{\gamma}$ is a $\mathrm{S} \& \mathrm{C}$ operation from X to Y .

Can we construct it ? Does there exist a finite set $\mathcal{I} \subseteq \mathcal{S}^{\prime}$ s.t. from \mathcal{I} you can reach each elements of \mathcal{S}^{\prime} ?

Theorem : If $\forall a \in \mathcal{A}$ there exists a S-adic word w s.t. $a \in F(w)$, then there exists a finite set $\mathcal{I} \in \mathcal{S}^{\prime}$ s.t. : $\forall X \in \mathcal{S}^{\prime}, \exists X_{0} \in \mathcal{I}, \exists\left(T_{i}\right)_{i \in\left\{0, n_{0}-1\right\}}=\binom{\beta i}{\delta_{i} \sigma i_{\eta i}^{\gamma i}}_{i \in\left\{0, n_{0}-1\right\}}$ a finite sequence of allowed substitute and cut operations s.t. :

$$
X=T_{n_{0}-1} \circ \ldots \circ T_{0}\left(X_{0}\right) .
$$

We can take $\mathcal{I}=\left\{\left(\begin{array}{ll}a & . \\ a & .\end{array}\right), a \in \mathcal{A}\right\}$.

First steps of computation with C

$$
C=\left\{C_{1}, C_{2}\right\}
$$

Experimentation (sad) reality

Problem : the tree grows too fast !

Number of vertices in function of depth

Growth after cuttings

Solution: cut branches with no hope to reach new final states...

At depth 9, among 1000 vertices, we found the first imbalance $3 .$. .
At depth 16, among 80000 vertices, we found the first imbalance $4 \ldots$

Results for C-adic words

Be w_{0} any C-adic word, e.g. $c_{1} \circ c_{2} \circ c_{1} \circ c_{2} \circ \ldots(1)$. Consider $w_{1}=c_{2} \circ c_{2} \circ c_{2}\left(w_{0}\right)$ and for each $n \geq 1$:

$$
\begin{cases}w_{n+1}=c_{1}^{2 n+2} \circ c_{2}\left(w_{n}\right) & \text { if } n \text { is odd } \\ w_{n+1}=c_{2}^{2 n+2} \circ c_{1}\left(w_{n}\right) & \text { otherwise. }\end{cases}
$$

Theorem 1 : For every n, w_{n} is a C-adic word satisfying $D\left(w_{n}\right) \geq n$.
\longrightarrow The imbalance of C -adic words is not bounded.
Theorem 2 : There exists a C-adic word with infinite imbalance.
This is a construction from $\left(w_{n}\right)_{n}$ using the following lemma :
Lemma: If w is a C-adic word s.t. $D(w) \geq 3 n$, then $c_{1}(w)$ (resp. $c_{2}(w)$) is a C-adic word satisfying $D(w) \geq n$.

Moral \& remaining questions

- The imbalance automaton gives intuitions on the nature (bounded/ unbounded) of the set of imbalances of S -adic words - and on rules to construct these imbalances.
- Difficulties :
- the choice of an initial set \mathcal{I}
- the growing speed.
- Miscellaneous questions :
- measure of C -adic words with infinite imbalance?
- what can be said for imbalances of C-adic words whose the number of consecutive occurencies of a same substitution in the directive sequence is bounded?
- Rotation coding?
- Does there exist S such that imbalances of S -adic word are finite but not bounded?
- Choice of an initial set \mathcal{I} when the condition of the theorem is not satisfied?

Thank you!

