
On closed and open factors of Arnoux-Rauzy words ∗

Olga Parshina1,2 and Luca Zamboni1
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Given a finite non-empty set A, let AN denote the set of (right) infinite words x =
x1x2x3 · · · with xi ∈ A. For each infinite word x = x1x2x3 · · · ∈ AN, the factor complexity
px(n) counts the number of distinct blocks (or factors) xixi+1 · · ·xi+n−1 of length n occur-
ring in x. First introduced by Hedlund and Morse in their seminal 1938 paper [13] under
the name of block growth, the factor complexity provides a useful measure of the extent of
randomness of x. Periodic words have bounded factor complexity while digit expansions
of normal numbers have maximal complexity. A celebrated theorem of Morse and Hed-
lund in [13] states that every aperiodic (meaning not ultimately periodic) word contains
at least n + 1 distinct factors of each length n. Sturmian words are those aperiodic words
of minimal factor complexity: px(n) = n + 1 for each n ≥ 1.

Other notions of complexity have been successfully used in the study of infinite words
and their combinatorial properties [1, 5, 6, 7, 15, 16]. In this note, we introduce and study
two new complexity functions based on the notions of open and closed words [8]. We recall
that a word u ∈ A+ is said to be closed if either u ∈ A or if u is a complete first return to
some proper factor v ∈ A+, meaning u has precisely two occurrences of v, one as a prefix
and one as a suffix. Otherwise, if u is not closed then u is open. For example, abbbab and
aabaaabaa are both closed words while ab and abaabbababbaaba are both open. It is easily
seen that all privileged words [15] are closed and hence so are all palindromic factors of
rich words [9]. The terminology open and closed was first introduced by the authors in [3]
although the notion of a closed word had already been introduced earlier by A. Carpi and
A. de Luca in [4]. For a nice overview of open and closed words we refer the reader to the
recent survey article by G. Fici [8].

To each infinite word x ∈ AN we consider the functions f c
x, f

o
x : N→ N which count the

number of closed and open factors of x of each length n ∈ N. We study the behaviour of
these complexity functions for Arnoux-Rauzy words [2]. Recall an infinite word x ∈ AN is
called an Arnoux-Rauzy word if it is recurrent and if x contains, for each n ≥ 0, precisely
one right special factor of length n which is a prefix of |A|-many factors of x of length n+1
and precisely one left special factor of length n which is a suffix of |A|-many factors of x
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of length n + 1. In particular one has px(n) = (|A| − 1)n + 1 and each factor u of x has
precisely |A| distinct complete first returns. Arnoux-Rauzy words were first introduced in
[2] in the special case of a 3-letter alphabet. Let us note that in case |A| = 2, then x is
Sturmian. Since for any word x ∈ AN we have that f c

x(n) + fo
x(n) = px(n), it suffices to

understand the behaviour of f c
x(n).

Our main result in Theorem 1 below provides an explicit formula for the closed com-
plexity function f c

x(n) for an Arnoux-Rauzy word x on a t-letter alphabet A. The formula
is expressed in terms of two related sequences associated to x. The first is the sequence
(bk)k≥0 of the lengths of the bispecial factors ε = B0, B1, B2, . . . of x, ordered in increasing

length. The second is the sequence (p
(k)
a )k≥0a∈A where for each k ≥ 0, the t coordinates of

(p
(k)
a )a∈A are the lengths of the t first returns in x to Bk. More precisely, p

(k)
a = |R(k)

a | − bk

where R
(k)
a is the complete first return to Bk in x beginning in Bka. Both sequences have

already been extensively studied in the literature. In particular, following [11] one has that

bk =

∑
a∈A p

(k)
a − t

t− 1
.

Furthermore, for each k ∈ N, the coordinates of (p
(k)
a )a∈A are coprime and each is a period

of the word Bk. Moreover, Bk is an extremal Fine and Wilf word i.e., any word u having

periods (p
(k)
a )a∈A and of length greater than bk is a constant word, i.e., u = an for some

n (see [17]). The sequence (p
(k)
a )k≥0a∈A is computed recursively as follows : p

(0)
a = 1 for each

a ∈ A. For k ≥ 1, let a ∈ A be the unique letter such that aBk−1 is a right special factor

of x. Then p
(k)
a = p

(k−1)
a , and p

(k)
b = p

(k−1)
b + p

(k−1)
a for b ∈ A \ {a}.

Theorem 1. Let x ∈ AN be an Arnoux-Rauzy word. For each k ∈ N and a ∈ A set

Ik,a = [bk−1 − pk + p
(k)
a + 2, bk + p

(k)
a ] where pk = minb∈A{p

(k)
b }. Let

F (a, n) =
∑
k∈N

n∈Ik,a

(d(n, Ik,a) + 1) (1)

where for n ∈ Ik,a, the quantity d(n, Ik,a) denotes the minimal distance from n to the
endpoints of the interval Ik,a. Then the number of closed factors of x for each length n is
f c
x(n) =

∑
a∈A F (a, n).

It is easily checked that the length of each interval Ik,a is 2pk − 2 and that for each
fixed n the sum in (1) is actually a finite sum.

The following figures illustrate the behaviour of the closed complexity function f c
x in

the case of the Fibonacci word and the Tribonacci word.
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It is evident that in general f c
x is not monotone. However as a consequence to Theorem 1

we are able to show :

Corollary 2. Let x be an Arnoux-Rauzy word. Then lim inf f c
x(n) = +∞.

In contrast, it is shown in [14] that for any paperfolding word x, lim inf f c
x(n) = 0, in

other words, for infinitely many n, x has no closed factors of length n.
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