Repetition avoidance in products of factors

Pamela Fleischmann
Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
fpa@informatik.uni-kiel.de
Pascal Ochem
LIRMM, CNRS, Univ. Montpellier, Montpellier, France
ochem@lirmm.fr
Kamellia Reshadi
Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
kre@informatik.uni-kiel.de

Abstract

We consider a variation on a classical avoidance problem from combinatorics on words that has been introduced by Mousavi and Shallit at DLT 2013. Let $\operatorname{pexp}_{i}(w)$ be the supremum of the exponent over the products of i factors of the word w. The repetition threshold $\mathrm{RT}_{i}(k)$ is then the infimum of $\operatorname{pexp}_{i}(w)$ over all words $w \in \sum_{k}^{\omega}$. Moussavi and Shallit obtained that $\mathrm{RT}_{i}(2)=2 i$ and $\mathrm{RT}_{2}(3)=\frac{13}{4}$. We show that $\mathrm{RT}_{i}(3)=\frac{3 i}{2}+\frac{1}{4}$ if i is even and $\mathrm{RT}_{i}(3) \geqslant \frac{3 i}{2}+\frac{1}{6}$ if i is odd and $i \geqslant 3$.

Keywords: Words; Repetition avoidance.

1 Main results

Mousavi and Shallit [2] have considered two generalizations of the avoidance of fractional repetitions in infinite words. A word is circularly r^{+}-power-free if it does not contain a factor $p x s$ such that $s p$ is a repetition of exponent strictly greater than r. Let $\Sigma_{k}=\{0,1, \ldots, k-1\}$. The smallest real number r such that w is r^{+}-power-free is denoted by $\operatorname{cexp}(w)$. Let $\operatorname{RTC}(k)$ denote the
minimum of $\operatorname{cexp}(w)$ over every $w \in \Sigma_{k}^{\omega}$. Similarly, $\operatorname{pexp}_{i}(w)$ is the smallest real number r such that every product of i factors of w is r^{+}-power-free word and $\mathrm{RT}_{i}(k)$ is the minimum of $\operatorname{pexp}_{i}(w)$ over every $w \in \Sigma_{k}^{\omega}$.

In this paper, we consider the ternary alphabet. We obtain bounds on $\mathrm{RT}_{i}(3)$ which extend the result of Mousavi and Shallit that $\mathrm{RT}_{2}(3)=\frac{13}{4}$.
Proposition 1. $\mathrm{RT}_{2}(k)=\mathrm{RTC}(k)$.
Proof. The language of words in Σ_{k}^{*} avoiding circular repetitions of exponent at least e (or strictly greater than e) is a factorial language. As it is wellknown [1], if a factorial language is infinite, then it contains a uniformly recurrent word w. By Proposition 14 in [2], $\operatorname{pexp}_{2}(w)=\operatorname{cexp}(w)$. This implies that $\mathrm{RT}_{2}(k)=\mathrm{RTC}(k)$.

Proposition 2. If i is even and $i \geqslant 2$, then $\mathrm{RT}_{i}(3) \geqslant \frac{3 i}{2}+\frac{1}{4}$.
Proof. Mousavi and Shallit [2] have proved that $\mathrm{RT}_{2}(3)=\frac{13}{4}$, which settles the case $i=2$. We have double checked their computation of the lower bound $\operatorname{RT}_{2}(3) \geqslant \frac{13}{4}$. Suppose that i is a fixed even integer and that w_{3} is an infinite ternary word. The lower bound for $i=2$ implies that there exists two factors u and v such that $u v=t^{e}$ with $e \geqslant \frac{13}{4}$. Thus, the prefix t^{3} of $u v$ is also a 2 -terms product of factors of w_{3}. So we can form the i terms product $\left(t^{3}\right)^{i / 2-1} u v$ which is a repetition of the form t^{x} with exponent $x=3\left(\frac{i}{2}-1\right)+e \geqslant 3\left(\frac{i}{2}-1\right)+\frac{13}{4}=\frac{3 i}{2}+\frac{1}{4}$. This is the desired lower bound.

Proposition 3. If i is odd and $i \geqslant 3$, then $\mathrm{RT}_{i}(3) \geqslant \frac{3 i}{2}+\frac{1}{6}$.
Proof. Suppose that $i \geqslant 3$ is a fixed odd integer, that is, $i=2 j+1$. Suppose that w_{3} is a recurrent ternary word such that the product of i factors of w_{3} is never a repetition of exponent at least $\frac{3 i}{2}+\frac{1}{6}=3 j+\frac{5}{3}$. First, w_{3} is square-free since otherwise there would exist an i-terms product of exponent $2 i$. Also, w_{3} does not contain two factors u and v with the following properties:

- $u v=t^{3}$,
- $u=t^{e}$ with $e \geqslant \frac{5}{3}$.

Indeed, this would produce the i-terms product $(u v)^{j} u$ which is a repetition of the form t^{x} with exponent $x=3 j+e \geqslant 3 j+\frac{5}{3}$.

So if a, b, and c are distinct letters, then w_{3} does not contain both $u=$ $a b c a b$ and $v=c a b c$ and w_{3} does not contain both $u=a b c b a b c$ and $v=b a b c b$. A computer check shows that no infinite ternary square-free word satisfies this property. This proves the desired lower bound.

Proposition 4. If i is even and $i \geqslant 2$, then $\operatorname{RT}_{i}(3) \leqslant \frac{3 i}{2}+\frac{1}{4}$.
Proof. Let i be any even integer at least 2. To prove this upper bound, it is sufficient to construct a ternary word w satisfying $\operatorname{pexp}_{i}(w) \leqslant \frac{3 i}{2}+\frac{1}{4}$. The ternary morphic word used in [2] to obtain $\mathrm{RT}_{2}(3) \leqslant \frac{13}{4}$ seems to satisfy the property. However, it is easier for us to consider another construction. Let us show that the image of every $7 / 5^{+}$-free word over Σ_{4} by the following 45 -uniform morphism satisfies $\operatorname{pexp}_{i} \leqslant \frac{3 i}{2}+\frac{1}{4}$.

$$
\left.\begin{array}{l}
0 \mapsto 010201210212021012102010212012101202101210212 \\
1 \mapsto \\
2 \mapsto 010201210212012101202101210201021202101210212 \\
3 \mapsto \\
3
\end{array}\right) 010201210120212012102120210121021201210120212 \text { 212120120210121021201210120120212012102010212 }
$$

First, we check that such ternary images are $\left(\frac{202}{135}, 36\right)$-free using the method in [3]. Since $\frac{202}{135}<\frac{3}{2}$, the period of every repetition formed from i pieces and with exponent at least $\frac{3 i}{2}$ must be at most 35 . Then we check exhaustively that the ternary images do not contain two factors u and v such that

- $u v=t^{e}$,
- $e>3$,
- $9 \leqslant|t| \leqslant 35$.

Thus, the period of every repetition formed from i pieces and with exponent strictly greater than $\frac{3 i}{2}$ must be at most 8 . Finally, we check exhaustively that $\operatorname{pexp}_{i} \leqslant \frac{3 i}{2}+\frac{1}{4}$ by considering only i-terms products that are repetitions of period at most 8 .

2 Concluding remarks

We conjecture that $\operatorname{RT}_{i}(3)=\frac{3 i}{2}+\frac{1}{6}$ for every odd $i \geqslant 3$, based on numerical evidence. We hope to get a suitable morphism and a proof of this case in the near future. Then the next step would be to consider the 4-letter alphabet. A quick computer check shows that $\mathrm{RT}_{i}(4) \geqslant i+\frac{1}{2}$ for every $i \geqslant 2$ and we conjecture that this is best possible. However, a proof of an upper bound of the form $\mathrm{RT}_{i}(4) \leqslant i+c$ cannot be similar to the proof of Proposition 4. That is because the multiplicative factor of i, which drops from $\frac{3}{2}$ when $k=3$ to 1 when $k=4$, forbids that the constructed word is a morphic image of a Dejean word.

References

[1] Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics. Springer Science \& Business Media, 2002.
[2] H. Mousavi and J. Shallit. Repetition avoidance in circular factors. Developments in Language Theory 2013, 384-395.
[3] P. Ochem. A generator of morphisms for infinite words. RAIRO - Theor. Inform. Appl., 40:427-441, 2006.
[4] A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 7:1-22, 1906.

