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Abstract. A word u is a scattered factor of w if there exist u1, u2, ..., un,
and v0, v1, .., vn such that u = u1u2...un and w = v0u1v1u2v2...unvn. We
consider the set of length-k scattered factors (k-spectrum) of a given
word w, denoted ScatFactk(w). We prove several properties of the sets
ScatFactk(w) in the case of words w over a binary alphabet of length
2k for which the number of occurrences of each letter is equal. Such
words are called strictly balanced. In particular, motivated by the task
of recognising whether a set of words is a k-spectra of some word w,
we consider the question of which cardinalities n = | ScatFactk(w)| are
obtainable for each k. We also consider the task of reconstructing words
from their strictly balanced scattered factors.

1 Introduction

A scattered factor of w can be thought of as a representation of w in which some
parts are missing. As such, there is considerable interest in the relationship of
a word and its scattered factors from both a theoretical and practical point of
view. For an introduction, see [3]. On the one hand, it is easy to imagine how,
in any situation where discrete, linear data is read from an imperfect input –
such as when sequencing DNA or during the transmission of a digital signal –
scattered factors form a natural model, as multiple parts of the input may be
missed, but the rest will remain unaffected and in-sequence. On the other hand,
from a more theoretical perspective, there have been efforts to bridge the gap
between the non-commutative field of combinatorics on words with traditional
commutative mathematics via Parikh matricies (cf. e.g., [5, 6]) which are closely
related to, and influenced by the topic of scattered factors.

One of the most fundamental questions about scattered factors of words and
sets of scattered factors in general, is: given a set S of words (of length k), is S the
set of scattered factors (or a k-spectrum) of some word w. In general, it remains
a long standing goal of the theory to give a “nice” descriptive characterisation of
scattered factor sets (and similarly, k-spectra), and to better understand their
structure [3]. Another fundamental question concerning k-spectra, and one well
motivated in several applications, is the question of reconstruction: given a word
w of length n, for what values k does the k-spectrum of w uniquely determined?
This question has generally had more success with definitive answers in a variety
of cases. In particular, in [1], the exact bound of n

2 +1 is given in the general case.



Other variations, including for the definition of k-spectra where multiplicities are
also taken into account, are considered in [4], while [2] considers the question of
reconstructing words from their palindromic scattered factors.

In the current work, we consider the restricted setting of strictly balanced
words: words over a binary alphabet {a, b} with equal numbers of as and bs. We
show that the cardinality of their scattered factor sets ranges between k+ 1 and
2k and we prove for every k+1 ≤ i ≤ 3k−2 whether a k-spectrum of cardinality
i exists. Moreover some results between 3k− 1 and 2k are given. In Section 4 we
approach the question of reconstructing strictly balanced words from k-spectra
in the specific case that the spectra are also limited to strictly balanced words
only. While we are not able to resolve the question completely, we conjecture
that the situation is similar to the general case; we show that this bound holds
in the case that w contains at most two blocks of bs.

Before we are able to present our results, we need to define the setting of
strictly balanced words. We consider words w over an alphabet Σ = {a, b}. The
number of occurrences of a letter a ∈ Σ in a word w ∈ Σ∗ is denoted by |w|a.
The subset of Σ∗ which contains only words with equal numbers of occurrences
of letters is defined by Σ∗sb = {w ∈ Σ∗| ∀x, y ∈ Σ : |w|x = |w|y} and these
words are called strictly balanced. For example, abaa is not strictly balanced,
while abbaba is.

Definition 1. A word u = a1 . . . an ∈ Σn, for n ∈ N, is a scattered factor of
a word w ∈ Σ+ if there exists v0, . . . , vn ∈ Σ∗ with w = v0a1v1 . . . vn−1anvn.
Let ScatFact(w) denote the set of w’s scattered factors and consider addition-
ally ScatFactk(w) (full k-spectrum) and ScatFact≤k(w) (k-spectrum) as the two
subsets of ScatFact(w) which contain only the scattered factors of length k ∈ N
or the ones up to length k ∈ N.

We note two obvious, but important symmetries regarding k-spectra: forw ∈
Σ∗. ScatFact(wR) = {uR | u ∈ ScatFact(w)} and ScatFact(w) = {u | u ∈
ScatFact(w)} hold with the renaming morphism ·. Thus, from a structural point
of view, it is sufficient to consider only one representative (here the lexicograph-
ically smallest with a < b) from the equivalence classes.

2 Cardinalities of k-Spectra of Strictly Balanced Words

In the current section, we are interested in the cardinalties of the k spectra,
and in the question: which cardinalities are not possible? It is a straightforward
observation that not every subset of Σk is a k-spectrum of some word w. For
example aa and bb can only be scattered factors of a word containing both as
and bs, and therefore having either ab or ba as a scattered factor. In fact, for
k = 2, the sets {aa, ab, bb} and {aa, ba, bb} are the smallest possible k-spectra
of words of length 2k in both the general case, and when restricted to strictly
balanced words only. Moreover these sets are equivalent in the sense that one is
a renaming (or a reversal) of the other. Note that the largest possible set in this
case is {aa, ab, ba, bb} which has size 4 = 2k = 2k. Our first result generalises
the previous observation about minimal-size and maximal-size k-spectra.



Lemma 1. For all k ∈ N, the smallest reachable cardinality for any w ∈ Σ2k
sb

is |ScatFactk(w)| = k + 1, reached exactly for w = akbk (up to renaming and
reversal), and ScatFactk(akbk) = {arbs| r + s = k, r, s ∈ [k]0} holds.

Lemma 2. Let k ∈ N. Then w ∈ {ab, ba}k if and only if ScatFactk(w) = Σk.

By the Lemmas 1 and 2, the characterisation for the smallest and the largest
closure w.r.t. cardinality of the given set S are given. Now the gap in between
will be investigated. Since there does not exist a gap for k = 2, assume k ∈ N≥3.
The following two statements show that 2k − 1 and 2k are always reachable and
thus the possible cardinalities for k = 3 are fully characterised.

1. |ScatFactk(w)| = 2k − 1 iff w ∈ {(ab)ia2b2(ab)k−i−2 | i ∈ [k − 2]0} (in
particular ScatFactk(w) = Σk\{bi+1ak−i−1}),

2. |ScatFactk(w)| = 2k iff w ∈ {ak−1babk−1, ak−1bka}

The cardinality of 2k is important since there is a gap between k + 1 and 2k,
i.e. ∀w ∈ Σ2k

sb : |ScatFactk(w)| 6∈ {k + 2, . . . , 2k − 1}. This shows that with
increasing k the number of possible cardinalities at the beginning of the scala
from k + 1 to 2k decreases: the larger k is the more unlikely it is somehow to
find a k-spectrum of a small cardinality. To investigate the second gap we have
|ScatFactk(ak−ibkai)| = k(i+1)−i2+1 for i ∈

[
bk2 c

]
. It is worth noting that this

includes all square numbers being at least four: |ScatFactk(a
k
2 bka

k
2 )| =

(
k
2 + 1

)2
holds for k even. Moreover |ScatFactk(ak−2bka2)| = 3k− 3 holds. This result is
important since it will be shown in the following that the cardinalities 2k+ 1 up
to 3k− 4 are not reachable. In other words ak−2bka2 delivers the third smallest
cardinality after k + 1 and 2k. Contrarily the cardinality 3k − 2 belongs to the
word ak−1b2abk−2.

Proposition 1. For k ≥ 5, no word w ∈ Σ2k
sb has k-spectrum of cardinality

2k + i for i ∈ [k − 4], i.e. between 2k + 1 and 3k − 4 is a cardinality-gap.

We will end this analysis with the conjecture that in contrast to the first
gap, the last gap ends earlier the larger k is. More precisely, if for k ∈ N≥4 and
i ∈ [k − 2]0, w = a2b2(ab)k−3−iba(ab)i holds then |ScatFactk(w)| = 2k − 2 − i
follows. Notice that this conjecture implies that indeed similar to the second gap
here 4k− 4 is always reached. On the other hand, in contrast to the second gap,
the third gap is not of the form 4k − 4− i for i ∈ [k − 4].

3 Reconstructing Strictly Balanced Words from their
k-Spectra

As with the general case, it is easy to see that strictly balanced words of length
2k are not uniquely determined by their scattered factors of length k. In the
current section we discuss the question of when a strictly balanced word w of
length 2k is uniquely identified by the set ScatFactk′(w) ∩Σk′

sb for 2k > k′ > k.



Of course if k′ is odd then ScatFactk′(w) ∩Σk′

sb = ∅ for all words w, so in these
cases the answer is trivially negative. In the general case, Dress and Erdös [1]
showed, that if ScatFactk+1(w) = ScatFactk+1(w′) holds for w,w′ ∈ Σ2k then
w = w′ follows. If w is strictly balanced we found a straightforward proof for
their proposition. However, in both proofs, there is a necessity in some cases to
consider scattered factors u consisting mostly of as or mostly of bs – i.e., that do
not belong to Σ∗sb. Thus it remains an open problem whether the same bound of
k + 1 (or in the case that k is even, k + 2) is sufficient. While we do not resolve
the question completely, we conjecture that these bounds do still hold.

Conjecture 1. Let k ∈ N. Let k′ = k + 1 if k is odd, and k′ = k + 2 if k is even.
Let w,w′ ∈ Σ2k

sb such that ScatFactk′(w) = ScatFactk′(w′). Then w = w′.

It is possible to show that the conjecture holds when there are at most two
blocks of bs (by symmetry at most two blocks of as), i.e. w ∈ a∗b∗a∗b∗a∗ ∩Σ2k

sb :

– for k odd, w is uniquely determined by ScatFactk+1(w) ∩Σk
sb,

– for k even, w is uniquely determined by ScatFactk+2(w) ∩Σk
sb.
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