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1 Introduction

We study relations of finite words, that is, binary relations R ⊆ A∗×A∗ for a finite alphabet
A. The study of these relations dates back to the works of Büchi, Elgot, Mezei, and Nivat
in the 1960s [3, 6, 11], with much subsequent work done later (e.g., [1, 5]). Most of the
investigations focused on extending the standard notion of regularity from languages to re-
lations. This effort has followed the long-standing tradition of using equational, operational,
and descriptive formalisms – that is, finite monoids, automata, and regular expressions – for
describing relations, and gave rise to three different classes of relations: the Recognizable,
the Automatic (a.k.a. Regular [1] or Synchronous [5]), and the Rational relations.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages over
extended alphabets, called synchronizing languages [8]. Intuitively, the idea is to describe
a binary relation by means of a two-tape automaton with two heads, one for each tape,
which can move independently one of the other. In the basic framework of synchronized
relations, one lets each head of the automaton to either move right or stay in the same
position. In addition, one can constrain the possible sequences of head motions by a suitable
regular language C ⊆ {1, 2}∗. In this way, each regular language C ⊆ {1, 2}∗ induces
a class of binary relations, denoted Rel(C), which is contained in the class of Rational
relations (due to Nivat’s Theorem [11]). For example, the class of Recognizable, Automatic,
and Rational relations are captured, respectively, by the languages CRec = {1}∗ · {2}∗,
CAut = {12}∗ ·{1}∗∪{12}∗ ·{2}∗, and CRat = {1, 2}∗. However, it should be noted that other
well-known subclasses of rational relations, such as deterministic or functional relations,
are not captured by notion of synchronization. In general, the correspondence between a
language C ⊆ {1, 2}∗ and the induced class Rel(C) of synchronized relations is not one-
to-one: it may happen that different languages C, D induce the same class of synchronized
relations. There are thus fundamental questions that arise naturally in this framework:
When do two classes of synchronized relations coincide, and when is one contained in the
other? Our contribution is a precise algorithmic answer to this type of questions.

More concretely, given a binary alphabet 2 = {1, 2} and another finite alphabet A, a word
w ∈ (2×A)∗ is said to synchronize the pair (w1, w2) ∈ A∗×A∗ if, for both i = 1, 2, wi is the
projection of w on A restricted to the positions marked with i. For short, we denote this by
JwK = (w1, w2) —e.g., J(1, a)(1, b)(2, b)(1, a)(2, c)K = (aba, bc). According to this definition,
every word over 2 × A synchronizes a pair of words over A, and every pair of words over
A is synchronized by (perhaps many) words over of 2 × A. This notion is readily lifted to
languages: a language L ⊆ (2×A)∗ synchronizes the relation JLK = {JwK | w ∈ L} ⊆ A∗×A∗.
For example, J((1, a)(2, a) ∪ (1, b)(2, b))∗K denotes the equality relation over A = {a, b}.
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2 Resynchronizing Classes of Word Relations

In this setup, one can define classes of relations by restricting the set of admitted synchro-
nizations. The natural way of doing so is to fix a language C ⊆ 2

∗, called control language,
and let L vary over all regular languages over the alphabet 2×A whose projections onto 2
are in C. Thus, for every regular C ⊆ 2

∗, there is an associated class Rel(C) of C-controlled
relations, namely, relations synchronized by regular languages L ⊆ (2×A)∗ whose projection
onto 2 are in C. Clearly, C ⊆ D ⊆ 2

∗, implies Rel(C) ⊆ Rel(D), but the converse does not
hold: while Rel(CRec) = Recognizable ⊆ Automatic = Rel(CAut), we have CRec 6⊆ CAut.
Moreover, as we have mentioned earlier, different control languages may induce the same
class of synchronized relations. For example, once again, the class of Recognizable relations
is induced by the control language CRec = {1}∗{2}∗, but also by C ′Rec = {1}∗{2}∗{1}∗, and
the class of Automatic relations is induced by CAut = {12}∗ · {1}∗ ∪ {12}∗ · {2}∗, or equally
by C ′Aut = {21}∗ ·{1}∗ ·{2}∗. This ‘mismatch’ between control languages and induced classes
of relations gives rise to the following algorithmic problem.

Class Containment Problem
Input: Two regular languages C, D ⊆ 2

∗

Question: Is Rel(C) ⊆ Rel(D) ?

Note that the above problem is different from the (C, D)-membership problem on synchro-
nized relations, which consists in deciding whether R ∈ Rel(D) for a given R ∈ Rel(C),
and which can be decidable or undecidable depending on C, D [4]. The Class Containment
Problem can be seen as the problem of whether every C-controlled regular language L has a
D-controlled regular language L′ so that JLK = JL′K. It was proved in [8] that this problem
is decidable for some particular instances of D, namely, for D = Recognizable,Automatic,
Length-preserving or Rational. More specifically, given a regular language C over the binary
alphabet 2, it is decidable whether Rel(C) is contained or not in Recognizable (respec-
tively, Automatic, Length-preserving and Rational). Our main contribution is a procedure
for deciding the Class Containment Problem in full generality, i.e. for arbitrary C and D.

I Main Theorem. The Class Containment Problem is decidable.

In addition, our results show that, for positive instances (C, D), one can effectively transform
any regular C-controlled language L into a regular D-controlled language L′ so that JLK =
JL′K. By ‘effectively transform’ we mean that one can receive as input an automaton (or
a regular expression) for L and produce an automaton (or a regular expression) for L′. In
particular, we show a normal form of control languages, implying that every synchronized
class can be expressed through a control language of star-height at most 1.
Related work. The formalization of a framework in which one can describe classes of word
relations by means of synchronization languages is quite recent [8]. As already mentioned,
the class containment problem was only addressed for the classes of Recognizable, Automatic
and Rational relations, for which several characterizations have been proposed [8]. The
formalism of synchronizations has been extended beyond rational relations by means of
semi-linear constraints [7] in the context of path querying languages for graph databases.

The paper [2] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words – somehow in the same spirit of our
synchronization languages – and was exploited to recover decidability of the equivalence
problem for transducers. The paper [9] pursues further this principle by studying “distor-
tions” of the origin information, called resynchronizations. Despite the similar terminology
and the connection between origins and synchronizing languages, the problems studied in
[2, 9] are of rather different nature than our Class Containment Problem.
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2 Characterization of the Class Containment Problem

We give an overview of our decision procedure for class containment.

The main idea is to decompose languages as finite unions of what we call simple languages.
The definition can be found in the article ([10]) but the interest of these languages lies in
the fact that we can prove the following two results.

I Proposition 1. Every regular language C ⊆ 2
∗ is effectively =Rel-equivalent to a finite

union of simple languages.

The proof of the above proposition is quite involved and it can be found in full detail in
the appendix of the article.

I Proposition 2. The class containment problem for simple languages C and D is decidable.

Moreover, Proposition 2 follows from a characterization of class containment for simple
languages in terms of their Parikh-images and cycles which is relatively simple.

The generalization of the previous result to the case where C is a finite union of simple
languages is given by the following basic result.

I Lemma 3. C1 ∪ C2 ⊆Rel D iff C1 ⊆Rel D and C2 ⊆Rel D.

The characterization turns out to be more involved when we have unions on the right
hand-side. In particular, The analogous of Lemma 3 for unions on the right hand-side does
not hold in general.

The characterization we provide is inductive on the number of languages that are unioned
on the right hand-side.
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