Generalized Beatty sequences and complementary triples

Abstract

A Beatty sequence is the sequence $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$, where α is a positive real number. What Beatty observed is that when B is the sequence $B(n)=\lfloor n \beta\rfloor$, with α and β satisfying $$
\begin{equation*} \frac{1}{\alpha}+\frac{1}{\beta}=1 \tag{1} \end{equation*}
$$ then $(A(n))$ and $(B(n))$ are complementary sequences, that is, the sets $\{A(n): n \geq 1\}$ and $\{B(n): n \geq 1\}$ are disjoint and their union is the set of positive integers.

A generalized Beatty sequence is a sequence v defined by $v(n)=p\lfloor n \alpha\rfloor+q n+r$, where α, p, q, r are real numbers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers ([1]). Question 1 Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α. Let Id defined by $\operatorname{Id}(n)=n$ be the identity map on the integers. For which sixtuples of integers p, q, r, s, t, u are the two sequences $$
v=p A+q \operatorname{Id}+r \text { and } w=s A+t \operatorname{Id}+u
$$ complementary sequences? Question 2 For which nonatuples of integers ($p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2}, p_{3}, q_{3}, r_{3}$) the three sequences $$
v_{i}=p_{i} A+q_{i} \operatorname{Id}+r_{i}, i=1,2,3
$$ are a complementary triple? Here a complementary triple are three sequences, with the property that the sets they determine are disjoint with union the positive integers.

In this talk, based on joint work with Jean-Paul Allouche I give (incomplete) answers to these questions. [1] Michel Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, Theoretical Computer Science 732(2018),73-79.

