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Abstract. We give necessary and sufficient conditions for the group of
a rational maximal bifix code Z to be isomorphic with the F -group of
Z ∩ F , when F is recurrent and Z ∩ F is rational. The case where F is
uniformly recurrent receives special attention.

1. Introduction

In the past few years, special attention has been given to bifix codes which
may not be maximal but are maximal within some language, which is usually
chosen to be recurrent or uniformly recurrent. This line of research has
produced new and strong connections between bifix codes, subgroups of free
groups and symbolic dynamical systems (cf. [4] and the sequels [5, 6, 7, 8]).

If Z is a thin maximal bifix code and F is a recurrent set, then X = Z∩F
is an F -maximal bifix code, that is, a maximal bifix code within F (with X
finite if F is uniformly recurrent) [4]. This leads to a process of “relativiza-
tion” of several previously known definitions for maximal codes. An impor-
tant example is the group G(Z) of a rational code Z, i.e., the Schützenberger
group of the minimum ideal J(Z) of the syntactic monoid M(Z∗) of Z∗. In
this case, the relativization consists in taking the intersection X = Z ∩ F
and the Schützenberger group of the minimum J -class JF (X) that inter-
sects the image of F in M(X∗), when X is rational. This group, denoted
by GF (X), is the F -group of X. How are G(Z) and GF (X) related? They
are not always isomorphic, even if Z is a group code (i.e., Z is a code with
M(Z∗) a finite group) and F is uniformly recurrent. In [4] it is shown that
if Z is a group code and F is Sturmian, then G(Z) and GF (X) are isomor-
phic. This was extended to tree sets in the manuscript [10], thanks to a
novel approach consisting in exploring links between G(Z), GF (X) and the
Schützenberger (profinite) group G(F ) of the minimum J -class J(F ) of the
topological closure of F within the free profinite monoid generated by the
alphabet of F , and, with the help of these links, taking advantage of results
on G(F ) from [2, 3]. Building on this approach, we get new results about
when G(Z) ' GF (X) holds, recovering previous results in the process.

2. Preliminaries on free profinite monoids

Here A is always a finite alphabet. Take u, v ∈ A∗. If u 6= v, there is
a homomorphism ϕ : A∗ → M onto a finite monoid such that ϕ(u) 6= ϕ(v).
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Let r(u, v) be the minimum for |M |. We may consider the metric d on A∗

such that d(u, v) = 2−r(u,v) if u 6= v. The free profinite monoid Â∗ is the
compact monoid resulting from the completion of A∗ under d, a terminology

justified as Â∗ is the free object in the class of A-generated profinite monoids.

For an extended introduction, see [11]. The elements of Â∗ are called pseu-

dowords over A. Words of A∗ are topologically isolated in Â∗. Pseudowords

generalize words, but the structure of Â∗ is richer than that of A∗. Next
is a glimpse of that. If F is a factorial subset of A∗, then the topological

closure F is itself factorial in Â∗, and when F satisfies the stronger property
of being recurrent, there is a minimum J -class J(F ) contained in F , which
moreover is regular. Maximal subgroups of J(F ) were identified in [2, 3].

We mention that the proper factors (that is, strictly J -above) of u ∈ Â∗\A∗

belong to A∗ if and only if u ∈ J(F ) for some uniformly recurrent set F [1].

3. Preparatory technical results

In this section we prepare the main results of the next section.
Recall that a parse of a word w with respect to a subset X of A∗ is

a triple (v, x, u) such that w = vxu with v ∈ A∗ \ A∗X, x ∈ X∗ and
u ∈ A∗ \ XA∗. The number of parses of w with respect to X is denoted
by δX(w). The F -degree of X is dF (X) = sup{δX(w) | w ∈ F}. The degree
of X is d(X) = dA∗(X). For F recurrent containing a bifix code X, one has
dF (X) finite if and only if X is F -thin and an F -maximal bifix code [4].

The notion of parse was generalized to pseudowords in [10], and so we

may extend δX to Â∗. Since then, we obtained the following useful tool.

Proposition 3.1. Consider a factorial set F of A∗. Let X be a rational
subset of F with finite F -degree d. Then δX(w) ≤ d for every w ∈ F , and
the mapping δX : F → {1, . . . , d} thus defined is continuous, if we endow
{1, . . . , d} with the discrete topology.

A pseudoword u is forbidden in Y ⊆ Â∗ if u is not a factor of an element
of Y . The next proposition was deduced with the help of Proposition 3.1.
We explain the notation used there. Let L be a rational language of A∗. By

the universal property of Â∗, the syntactic homomorphism ηL : A∗ →M(L)

admits a unique extension to a continuous homomorphism η̂L : Â∗ →M(L).

Proposition 3.2. Let Z be a rational maximal bifix code of A∗. Suppose that
F is a recurrent subset of A∗ and that the intersection X = Z∩F is rational.
The equality dF (X) = d(Z) holds if and only if the elements of J(F ) are
forbidden in Z. Moreover, if dF (X) = d(Z) then η̂Z∗(J(F )) ⊆ J(Z).

Consider a language L of A∗. Let u, v ∈ A∗. By definition, ηL(u) ≤ ηL(v)
if and only if the context of u is contained in the context of v.

Proposition 3.3. Let Z and F be subsets of A∗, with F factorial, and

let X = Z ∩ F . Suppose Z∗ and X∗ are rational. Let e, f ∈ Â∗ \ {1} be

idempotents, and let u, v ∈ Â∗ with u = euf , v = evf and u ∈ F . Then:

(1) η̂X∗(u) ≤ η̂X∗(v)⇒ η̂Z∗(u) ≤ η̂Z∗(v), if e and f are forbidden in Z;
(2) η̂Z∗(v) ≤ η̂Z∗(u)⇒ η̂X∗(v) ≤ η̂X∗(u), if e and f are forbidden in X.
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Applying the preceeding tools, we deduce relationships between the max-
imal subgroups of J(F ), J(Z) and JF (Z ∩ F ), for suitable Z and F .

Theorem 3.4. Let F be a factorial subset of A∗, take a rational prefix
code Z of A∗, and suppose X = Z ∩ F is a rational F -maximal prefix code.

Let H be a maximal subgroup of Â∗ with H ⊆ F and the elements of H being
forbidden in Z. Consider the maximal subgroup HX of M(X∗) containing
η̂X∗(H) and the maximal subgroup HZ of M(Z∗) containing η̂Z∗(H). There
is an injective homomorphism α : HX → HZ such that the diagram

(3.1) H
η̂Z∗ //

η̂X∗
��

HZ

HX

α

<<

commutes.

4. Main results

Based on the technical results of the previous section, namely Theo-
rem 3.4, we deduce our main results.

Let F be a recurrent set of A∗. Say that a rational code Z of A∗ is F -
charged if η̂Z∗ maps maximal subgroups of J(F ) onto maximal subgroups
of J(Z). A rational code X contained in F is weakly F -charged if η̂X∗ maps
maximal subgroups of J(F ) onto maximal subgroups of JF (X).

Theorem 4.1. Consider a recurrent subset F of A∗ and a rational bifix
code Z of A∗ with finite degree such that X = Z ∩ F is rational. Let H be
a maximal subgroup of J(F ). The following conditions are equivalent:

(1) Z is F -charged;
(2) dF (X) = d(Z), GF (X) ' G(Z) and X is weakly F -charged;
(3) dF (X) = d(Z), |GF (X)| = |G(Z)| and X is weakly F -charged.

Recall that if F ⊆ A∗ is (uniformly) recurrent and Z is a maximal bifix
code of A∗, then Z ∩ F is an F -maximal bifix (finite) code [4].

We show that a group code of A∗ is F -charged when F is an uniformly re-
current connected set (that is, with only connected extension graphs, see [5])
with alphabet A. Therefore, we get the following corollary.

Corollary 4.2. If Z is a group code of A∗ and F is a uniformly recurrent
connected set of alphabet A, then d(Z) = dF (Z∩F ) and G(Z) ' GF (Z∩F ).

We say that a rational code Z is nil-simple if all idempotents of M(Z∗)
are in J(Z). Group codes and finite codes are nil-simple. If F is uniformly
recurrent and Z is nil-simple, the equality dF (X) = d(Z) in Theorem 4.1
becomes redundant, as seen next.

Theorem 4.3. Let Z be a uniformly recurrent subset of A∗, and let Z be a
nil-simple rational maximal bifix code Z of A∗. The following are equivalent:

(1) Z is F -charged;
(2) GF (Z ∩ F ) ' G(Z) and Z ∩ F is weakly F -charged;
(3) |GF (Z ∩ F )| = |G(Z)| and Z ∩ F is weakly F -charged.

Moreover, if Z is F -charged, then d(Z) = dF (Z ∩ F ).
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The special case of Corollary 4.2 in which Z is a group code and F is
Sturmian was first proved in [4].

We also studied F -groups as permutation groups acting in a natural man-
ner. In what follows, QY is the set of vertices of the minimal automaton
of Y ∗, and iY is the corresponding initial state.

Theorem 4.4. Let F be a recurrent subset of A∗. Suppose that Z is a
rational bifix code of finite degree d. Let X = Z ∩ F and suppose that X
is rational. Let H be a maximal subgroup of J(F ) such that HZ = η̂Z∗(H)
is a maximal subgroup of J(Z), and let HX = η̂X∗(H). Take the map
f : QX ·HX → QZ ·HZ given by f(iX · u) = iZ · u, for u ∈ H, and take the
unique group isomorphism α : HX → HZ such that Diagram (3.1) commutes.
Then the pair (f, α) is an equivalence of permutation groups with degree d.
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