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Abstract

We establish several recurrence relations and an explicit formula for the
number of factorizations of the length-n prefix of the Fibonacci word into
a (not strictly) decreasing sequence of standard Fibonacci words (OEIS
sequence A300066).

1 Introduction

Extended Ostrowski numeration systems were introduced in [4] to solve a prob-
lem on palindromes in Sturmian words. A representation of n in such a system
related to a given Sturmian slope corresponds to a factorization of the prefix
of length n of the standard Sturmian word of this slope as a concatenation of
finite standard words in a non-strictly decreasing order. Since in this abstract
we consider only the Fibonacci case, it is reasonable to give a Fibonacci exam-
ple: consider the prefix abaababaabaaba of the Fibonacci word of length 14 and
its decompositions to standard words s0 = a, s1 = ab, s2 = aba, s3 = abaab,
s4 = abaababa, s5 = abaababaabaab in a decreasing order. We see that

abaababaabaaba = (abaababaabaab)(a) = s5s0

= (abaababa)(abaab)(a) = s4s3s0

= (abaababa)(aba)(ab)(a) = s4s2s1s0

= (abaababa)(aba)(aba) = s4s2s2

= (abaab)(aba)(aba)(aba) = s3s2s2s2

= (abaab)(aba)(aba)(ab)(a) = s3s2s2s1s0.

These six factorizations correspond to six valid representations of 14:

14 = 100001 = 11001 = 10111 = 10200 = 1300 = 1211.

If we restrict ourselves to representations corresponding to strictly decreasing
sequences, or, which is the same, to the representations only containing zeros
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and ones, their number for each n is equal to the well-studied OEIS sequence
A000119 (see, e.g., [2]). In particular, the lower limit of the sequence is 1, and
the upper asymptotics grows as O(

√
n). But here we consider the number of all

valid representations of n, denoted by T (n), so that, for example, T (14) = 6,
the obtained sequence is new and was just recently uploaded to the OEIS as
A300066. Here we prove a series of recurrence relations and an explicit formula
for it.

2 Result

Let φ denote the golden ratio, φ = 1+
√
5

2 . The Fibonacci word is a Sturmian
word s = s[1]s[2] · · · of the slope 1/(φ + 1) = 1/φ2 and of zero intercept, that
is, for all n, we have

s[n] =

{
a, if {n/φ2} < 1− 1/φ2,

b, otherwise.
(1)

Here {x} denotes the fractional part of x. Another way to construct s is to
consider it as a limit s = lim sn of finite standard words

s−1 = b, s0 = a, sn+1 = snsn−1 for all n ≥ 0. (2)

We write N = kn · · · k0 and call this representation of N valid if ki ≥ 0 for all

i and s(0..N ] = skn
n s

kn−1

n−1 · · · sk0
0 , where s(0..N ] is the prefix of length N of the

Fibonacci word. The number of valid representations of N is denoted by T (N).

Proposition 1. If s[n] = a, all valid representations of n end with an even
number of 0s. If s[n] = b, all of them end with an odd number of 0s.

The main result of this abstract is the following

Theorem 1. If s[n] = a, then T (n) = ⌈n/φ2⌉, or, which is the same, T (n)
is equal to the number of occurrences of b to s(0..n] plus one. If s[n] = b,
then T (n) = ⌈n/φ3⌉, or, which is the same, T (n) is equal to the number of
occurrences of aa to s(0..n] plus one.

The proof of the theorem is based on several recurrence relations on T (n):

Proposition 2. For all s, T (r0) ≥ T (r). If r = r′102k for some k ≥ 0, then
T (r0) = T (r).

Proposition 3. For all z ∈ {0, 1}∗ and for all k ≥ 1,

T (z102k) = T (z102k−2) + T (z(01)k).

Proposition 4. For all z ∈ {0, 1}∗ and for all k ≥ 1,

T (z10k1) =

{
T (z10k+1), if k is odd,

T (z10k) + T (z(01)k/2), if k is even.
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Propositions 2 to 4 give a full list of recurrence relations sufficient to compute
T (n) for every n > 1, starting from T (1) = 1. In particular, as corollaries, we get
simple formulas on the values of T on Fibonacci numbers and their predecessors:
starting from F1 = 1, F2 = 2, Fn+2 = Fn+1 + Fn, we get

T (F2n−1) = T (F2n) = F2n−3 + 1

and
T (F2n − 1) = T (F2n+1 − 1) = F2n−2.

The same recurrence relations serve to prove Theorem 1.
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