Number of valid decompositions of Fibonacci prefixes

A. E. Frid, P. Bonardo

May 29, 2018

Abstract

We establish several recurrence relations and an explicit formula for the number of factorizations of the length- n prefix of the Fibonacci word into a (not strictly) decreasing sequence of standard Fibonacci words (OEIS sequence A300066).

1 Introduction

Extended Ostrowski numeration systems were introduced in [4] to solve a problem on palindromes in Sturmian words. A representation of n in such a system related to a given Sturmian slope corresponds to a factorization of the prefix of length n of the standard Sturmian word of this slope as a concatenation of finite standard words in a non-strictly decreasing order. Since in this abstract we consider only the Fibonacci case, it is reasonable to give a Fibonacci example: consider the prefix abaababaabaaba of the Fibonacci word of length 14 and its decompositions to standard words $s_{0}=a, s_{1}=a b, s_{2}=a b a, s_{3}=a b a a b$, $s_{4}=a b a a b a b a, s_{5}=a b a a b a b a a b a a b$ in a decreasing order. We see that

$$
\begin{aligned}
a b a a b a b a a b a a b a & =(a b a a b a b a a b a a b)(a)=s_{5} s_{0} \\
& =(a b a a b a b a)(a b a a b)(a)=s_{4} s_{3} s_{0} \\
& =(a b a a b a b a)(a b a)(a b)(a)=s_{4} s_{2} s_{1} s_{0} \\
& =(a b a a b a b a)(a b a)(a b a)=s_{4} s_{2} s_{2} \\
& =(a b a a b)(a b a)(a b a)(a b a)=s_{3} s_{2} s_{2} s_{2} \\
& =(a b a a b)(a b a)(a b a)(a b)(a)=s_{3} s_{2} s_{2} s_{1} s_{0} .
\end{aligned}
$$

These six factorizations correspond to six valid representations of 14:

$$
14=\overline{100001}=\overline{11001}=\overline{10111}=\overline{10200}=\overline{1300}=\overline{1211} .
$$

If we restrict ourselves to representations corresponding to strictly decreasing sequences, or, which is the same, to the representations only containing zeros
and ones, their number for each n is equal to the well-studied OEIS sequence A000119 (see, e.g., [2]). In particular, the lower limit of the sequence is 1 , and the upper asymptotics grows as $O(\sqrt{n})$. But here we consider the number of all valid representations of n, denoted by $T(n)$, so that, for example, $T(14)=6$, the obtained sequence is new and was just recently uploaded to the OEIS as A300066. Here we prove a series of recurrence relations and an explicit formula for it.

2 Result

Let φ denote the golden ratio, $\varphi=\frac{1+\sqrt{5}}{2}$. The Fibonacci word is a Sturmian word $s=s[1] s[2] \cdots$ of the slope $1 /(\varphi+1)=1 / \varphi^{2}$ and of zero intercept, that is, for all n, we have

$$
s[n]= \begin{cases}a, & \text { if }\left\{n / \varphi^{2}\right\}<1-1 / \varphi^{2} \tag{1}\\ b, & \text { otherwise }\end{cases}
$$

Here $\{x\}$ denotes the fractional part of x. Another way to construct s is to consider it as a limit $s=\lim s_{n}$ of finite standard words

$$
\begin{equation*}
s_{-1}=b, s_{0}=a, s_{n+1}=s_{n} s_{n-1} \text { for all } n \geq 0 \tag{2}
\end{equation*}
$$

We write $N=\overline{k_{n} \cdots k_{0}}$ and call this representation of N valid if $k_{i} \geq 0$ for all i and $s(0 . . N]=s_{n}^{k_{n}} s_{n-1}^{k_{n-1}} \cdots s_{0}^{k_{0}}$, where $s(0 . . N]$ is the prefix of length N of the Fibonacci word. The number of valid representations of N is denoted by $T(N)$.
Proposition 1. If $s[n]=a$, all valid representations of n end with an even number of 0s. If $s[n]=b$, all of them end with an odd number of $0 s$.

The main result of this abstract is the following
Theorem 1. If $s[n]=a$, then $T(n)=\left\lceil n / \varphi^{2}\right\rceil$, or, which is the same, $T(n)$ is equal to the number of occurrences of b to $s(0 . . n]$ plus one. If $s[n]=b$, then $T(n)=\left\lceil n / \varphi^{3}\right\rceil$, or, which is the same, $T(n)$ is equal to the number of occurrences of aa to $s(0 . . n]$ plus one.

The proof of the theorem is based on several recurrence relations on $T(n)$:
Proposition 2. For all $\bar{s}, T(\overline{r 0}) \geq T(\bar{r})$. If $r=r^{\prime} 10^{2 k}$ for some $k \geq 0$, then $T(\overline{r 0})=T(\bar{r})$.

Proposition 3. For all $z \in\{0,1\}^{*}$ and for all $k \geq 1$,

$$
T\left(\overline{z 10^{2 k}}\right)=T\left(\overline{z 10^{2 k-2}}\right)+T\left(\overline{z(01)^{k}}\right) .
$$

Proposition 4. For all $z \in\{0,1\}^{*}$ and for all $k \geq 1$,

$$
T\left(\overline{z 10^{k} 1}\right)=\left\{\begin{array}{l}
T\left(\overline{z 10^{k+1}}\right), \text { if } k \text { is odd, } \\
T\left(\overline{z 10^{k}}\right)+T\left(\overline{z(01)^{k / 2}}\right), \text { if } k \text { is even. }
\end{array}\right.
$$

Propositions 2 to 4 give a full list of recurrence relations sufficient to compute $T(n)$ for every $n>1$, starting from $T(1)=1$. In particular, as corollaries, we get simple formulas on the values of T on Fibonacci numbers and their predecessors: starting from $F_{1}=1, F_{2}=2, F_{n+2}=F_{n+1}+F_{n}$, we get

$$
T\left(F_{2 n-1}\right)=T\left(F_{2 n}\right)=F_{2 n-3}+1
$$

and

$$
T\left(F_{2 n}-1\right)=T\left(F_{2 n+1}-1\right)=F_{2 n-2} .
$$

The same recurrence relations serve to prove Theorem 1.

3 Acknowledgement

We are deeply grateful to J. O. Shallit for computing the first values of the considered sequence and submitting it to the On-Line Encyclopedia of Integer Sequences.

References

[1] J.-P. Allouche, J. Shallit. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, 2003.
[2] J. Berstel. An exercise on Fibonacci representations. Theor. Inform. Appl. 35 (2002) 491-498.
[3] J. Berstel, P. Séébold. Sturmian words. In: M. Lothaire, Algebraic combinatorics on words. Cambridge University Press, 2002. Chapter 2, pp. 45-110.
[4] A. E. Frid, Sturmian numeration systems and decompositions to palindromes. European J. Combin. 71 (2018) 202-212.
[5] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952) 190-195.
[6] A. Ostrowski. Bemerkungen zur Theorie der diophantischen Approximationen. Hamb. Abh. 1 (1921) 77-98.
[7] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. R. Sci. Liège 41 (1972) 179-182.

